
Hidden Field Equations (HFE) and Isomorphisms of

Polynomials (IP): two new Families of Asymmetric

Algorithms

- Extended Version -

Jacques Patarin

BULL Smartcards and Terminals, 68 route de Versailles - BP 45

78431 Louveciennes Cedex - France

e-mail : J.Patarin@frlv.bull.fr

Abstract

In [11] T. Matsumoto and H. Imai described a new asymmetric algorithm based on multivariate

polynomials of degree two over a �nite �eld. Then in [14] this algorithm was broken. The aim of

this paper is to show that despite this result it is probably possible to use multivariate polynomials

of degree two in carefully designed algorithms for asymmetric cryptography.

In this paper we will give some examples of such schemes. All the examples that we will give, belong

to two large family of schemes: HFE and IP. With HFE we will be able to do encryption, signatures

or authentication in an asymmetric way. Moreover HFE (with properly chosen parameters) resist

to all known attacks and can be used in order to give very short asymmetric signatures or very

short encrypted messages (of length 128 bits or 64 bits for example). IP can be used for asymmetric

authentications or signatures. IP authentications are zero knowledge.

Note 1 : Another title for this paper could be \How to repair Matsumoto-Imai algorithm with

the same kind of public polynomials".

Note 2 : This paper is the extended version of the paper with the same title published at Euro-

crypt'96.

1 Introduction

Currently the security of most algorithms that we know in Asymmetric Cryptography for encryption

or signatures rely on the (not proved) intractability of the factorisation or discrete log problem.

So today one of the problems of Asymmetric Cryptography is to �nd new and e�cient algorithms for

encryption or signatures that do not depend on these two closely related problems. (For authentication,

thanks to new algorithms for example [19] or [20], the situation is much better now).

Another problem of Asymmetric Cryptography is to �nd a way to have very short asymmetric signatures

(the shorter outputs have actually about 320 bits, with the DSS algorithm for example, or 220 bits

with C. Schnorr's algorithm, but we can imagine that a much shorter asymmetric signature may exist).

Similarly another problem is to �nd a way to perform asymmetric encryption with short length outputs

when the inputs are short (the shorter outputs have at the present about 512 bits).

The main subject of this paper is to describe a new class of asymmetric algorithms, called HFE which

stands for \Hidden Field Equations". HFE is a candidate for these two problems.

The security of HFE is not proved but \apparently" it seems to be related to the problem of solving a

system of multivariate quadratic equations over a �nite �eld (for example GF (2)).

The general problem of solving a randomly selected system of multivariate quadratic equations over

GF (2) isNP -hard (cf [9] p. 251), and it is a completely di�erent problem from the factorisation problem

or the discret log problem. (However we will see that to recover a cleartext from an encrypted HFE

text is not an NP complete problem, although this problem is expected to be exponentially di�cult).

1

Moreover HFE with some well chosen parameters will give us a candidate algorithm for asymmetric

signatures of 128 bits, or even 64 bits !

Similarly when HFE is used for encryption, parameters can be chosen in order to encrypt messages by

blocks of 128 bits, or even by blocks of 64 bits.

However it should be noticed that HFE is not the �rst try to use multivariate quadratic equations

over F2 = GF (2) for an asymmetric cryptosystem: in [11] Matsumoto and Imai have designed such an

algorithm, called C�, and this algorithm was broken in [14].

Despite a lot of common points between HFE and the algorithm of [11], HFE has been especially

designed to resist all the ideas of the attacks of [14] and we have made careful simulations about this.

The second family of algorithms that we will present is called IP which stands for \Isomorphisms of

Polynomials". IP, as HFE can use public multivariate polynomials of degree 2 (or more). However IP

is very di�erent from HFE. IP authentications can be proved to be zero knowledge.

This paper is divided in four parts:

1. In sections 2,3,4,5 we describe and comment the \basic" HFE, i.e. the version of HFE with the

easiest description.

2. In part II we will give some comments about the security of this \basic" HFE, and we will describe

the \a�ne multiple attack". This attack detects some weak keys but is not e�cient against well

chosen parameters.

3. In part III we will see that there are a lot of variations of the \basic" HFE.

4. In part IV we will see a very di�erent algorithm: IP. IP is only for authentications or signatures.

Finally we will conclude in section 24.

What is new in this extended version

In this extended version, many more details are given compared to the short paper version published

in Crypto'96 with the same title. Moreover, some new sections have been added. For example:

1. In section 4.3, we explain how to generate HFE signatures of length only 64 bits (in the short

paper, we explained only for length 128 bits).

2. In section 5, the di�erent ways to solve f(x) = y are explained.

3. In section 7 (example 4), we study whether a new quadratic permutation, found by Hans Dob-

bertin in [7], could be used in HFE.

4. In section 9, we explain some of the (unsuccessful) tries we did to cryptanalyze the HFE schemes.

5. In part IV, more details are given about the IP problems. However, this extended version is

mainly focused on HFE, since another paper ([6]) is devoted explicitly to the IP problems.

6. In section 24, we present a HFE challenge with a total prize of US $1000, that we o�er for breaking

an explicit example of HFE asymmetric signature of 80 and 128 bits.

2

Part I: The \basic HFE"

2 Mathematical Background

The main Mathematical properties needed are given in this section.

2.1 Function f

Let K be a �nite �eld of cardinal q and characteristic p (typically but not necessary q = p = 2).

Let LN be an extension of degree N of K.

Let �ij , �i and �0 be elements of LN .

Let �ij ; 'ij and �i be integers.

Finally let f be the function:

f :

LN ! LN

x 7!
X
i;j

�ijx
q
�ij+q

'ij
+
X
i

�ix
q�i + �0:

Then f is a polynomial in x.

Moreover let B be a basic of LN .

Then the expression of f in the basis B is:

f(x1; : : : ; xN) = (p1(x1; : : : ; xN); : : : ; pN(x1; : : : ; xN))

where p1; : : : ; pN are N polynomials in N variables of degree 2.

The reason for this is that for any integer �, x 7! xq
�

is a linear function of LN ! LN .

The polynomials p1; : : : ; pN are found by choosing a \representation" of LN .

Such a \representation" is typically given by the choice of an irreductible polynomial iN(X) over K,

of degree N , so we can identify LN with K[X]=(iN(X)).

It is then easy to �nd the polynomials p1; : : : ; pN .

2.2 Inversion of f

f is not always a permutation of LN .

However the heart of our new algorithm HFE will be this theorem:

Theorem 2.1 Let Ln be a �nite �eld, with jLnj = qn with q and n \not too large" (for example q � 64

and n � 1024).

Let f(x) be a given polynomial in x in a �eld Ln, with a degree d \not too large" (for example d � 1024).

Let a be an element of Ln.

Then it is always possible (on a computer) to �nd all the roots of the equation f(x) = a.

Proof. This result is a classical result about the root �nding of polynomials over �nite �elds. Proof

of this result, i.e. the classical and e�cient algorithms for root �nding, can be found in [1] pp. 17-26,

or in [10] chapter 4 for example. Improved algorithms for root �nding can be found in [21] and in [22].

Moreover at the end of this Part I, in section 5 we give some results about the expected complexity of

theses algorithms, and how e�cient they are on real values.

Notes.

1. Let d be the degree of the polynomial f .

Then for all a of LN there are at most d solutions x of f(x) = a. Moreover in practice there will

be often very few solutions x of f(x) = a (for example there will be often only 0, 1 or 2 solutions).

2. Sometimes f can be a permutation (an \Hermite's criterion" is given in [10] chapter 7 for this).

However it seems to be di�cult to �nd how to choose f to be a permutation when f has more

than one monomial in x (cf [10] chapter 7 or [13]) because only monomials in xq
i

+ xq
j

or xq
i

are

allowed.

3

3 Description of the basic HFE in encryption

In this section we will describe the \basic" HFE algorithm for encryption, i.e. the version with the

easiest description. The \basic" HFE of this section is the HFE that we have studied the most so far.

(We will give the other versions in part III of this paper, in order to show that there is really a large

number of ways to obtain multivariate quadratic equations and to hide the trapdoor. Moreover some

of these versions have some advantage, for example some of them have easier secret computations).

Representation x of the message M

A �eld K, with q = pm elements is public.

Each message M is represented by a value x where x is a string of n elements of K. (So if p = 2, each

message will be represented by nm bits).

Moreover we will sometimes assume that some redundancy has been put in the representation of the

messages (details about how this redundancy can be put are given below).

Encryption of x

The secret items will be:

1. An extension Ln of K of degree n.

2. A function f , as described in section 2.1 from Ln to Ln, with a degree d \not too large". (For

example d � 1024, and more precisely a typical d could be such that 17 � d � 64). (We will give

more details about this in section 4).

3. Two a�ne bijections s and t of Kn ! Kn. (These a�ne bijections can be represented in a basis

as polynomials of total degree one and with coe�cients in K).

Note. It is also possible to consider that Ln is public (because it is possible to prove that instead of

changing Ln we will have the same result if we change s and t, so we can consider that Ln is �xed).

The ciphering is described in �gure 1 (this �gure should be read from the top to the bottom). The

ciphertext y is given by: y = t(f(s(x))).

?

�

+ redundancy

x

s : secret

b

a

M

y

t : secret

f : secret

(p1; :::; pn) : publics

Figure 1: The \basic" HFE for encryption

4

An important point to notice is that since s and t are of degree one, and since f is of degree two in a

basis, the composition of all these operations will still be a quadratic function in a basis.

So this function can be given by n polynomials with coe�cients in K, (p1; : : : ; pn). These polynomials

give the components y1, ..., yn of the ciphertext y from the components x1, ..., xn of x:
8>>><
>>>:

y1 = p1(x1; :::; xn)

y2 = p2(x1; :::; xn)
...

yn = pn(x1; :::; xn)

The public items are:

1. The �eld K of q = pm elements, and the length n.

2. The n polynomials (p1; : : : ; pn) in n variables over K.

3. The way to put redundancy in the messages (i.e. the way to obtain x from M).

So no secret is needed to encrypt a message M .

Moreover decryption will be easy if all the secret items are known since all the operations given in �gure

1 will be inverted. The inversion of the function f will be obtained by solving a polynomial equation

with one variable in the �eld Ln, as it is explained in section 2.2 (and in section 5).

It is important to notice that since f is not necessarily a bijection, we may �nd more than one solution to

this inversion (we will �nd at most d solutions because f is a polynomial of degree d in a (commutative)

�eld). However, as we are to see, thanks to the redundancy given for M , the right solution M will be

found.

Redundancy

We give two examples that show how some redundancy can be put in order to recover the right solution.

Example 1 (\Redundancy in the cleartext x"): Here, the length of the input x of the function

is larger than the length of the message M , because in x we have M + some redundancy. For example

if K = F2 and if we want to cipher a message M of k bits we will introduce for example 64 extra bits

of redundancy so the message will be represented by n = k + 64 elements of K.

A nice way to put the redundancy is to make use of an error correcting code. We can also suggest that

x = M jjh(M), where jj is the concatenation function and where h(M) is the 64 �rst bits of a hash

function such as MD5 or SHS. We can also use some simpler functions for h(M) but it is important

that each bits of h(M) really depends on the bits of M in a non-linear way.

Example 2 (\Redundancy outside the cleartext x"): Here, x = M is the message, where no

special redundancy has been put. However, the ciphertext Y is not only y, but y + a one-way function

of x.

For example, the ciphertext is Y = yjjHash(x), where jj is the concatenation function, Hash is a public

one-way hash function (for example Hash=MD5 or SHS), and y = t(f(s(x))) as before.

It can be noticed that if Hash is a collision-free one-way hash function, then we will always be sure to

�nd only one solution for the cleartext x.

Remarks :

1. Instead of using a one-way hash function, we can also have Y = yjjyn+1, ..., yn+k , where

yn+1; :::; yn+k are given by k public polynomials pn+1, ..., pn+k of total degree two in x1, ...,

xn. Unlike in p1, ..., pn, there is no trapdoor in pn+1, ..., pn+k (these extra polnomials are just

here to eliminate the wrong values x). When k is small (k � n for example), it is expected that

these extra polynomials do not weaken the security of the system. We can also notice that these

polynomials pn+1, ..., pn+k can also be mixed with p1, ..., pn in order to have public polynomials

p0
1
, ..., p0n+k , where the p

0
i have secret linear expressions in the p1, ..., pn+k values.

2. Of course, the redundancy is always done with public functions or equations (in order to have a

public key encryption scheme).

5

Attack with related messages

Let y be the ciphertext of x, and let y0 be the ciphertext of x + d, where d is a constant. If y, y0 and

d are known, then x will be easily found because y � y0 is of degree one in the xi variables. A similar

property exists in RSA when the public exponent is less than than 32 bits large (see [4]). For some

applications, such a property must be avoided. For that purpose, one solution is to publish a public

permutation g { for example g is a DES with a public key K { and to encrypt by y = HFE(g(x))

(instead of y = HFE(x)). Another solution might be to padd the plaintext with random bits.

This concludes the description of the \basic" HFE algorithm for encryption.

4 The basic HFE in signature and authentication

We will now see three examples of how we can use HFE for asymmetric signatures. In the �rst example

the signatures will have 160 bits, in the second example the signatures will have about 128 bits, and in

the third example, the signatures will have about 64 bits (or even about 32 bits if we allow very slow

signature veri�cation !).

4.1 Example 1

?

?

S
SSw

�

�

�
�
�
���
y0

y00

?

P1; :::; P128

b

a

y

P129; :::; P160

t

f

s

x

Figure 2: Example 1 of HFE in signature. x : the signature (160 bits). y0 : the hash to sign (128 bits).

P1; : : : ; P128 are public. P129; : : : ; P160 are secrets.

Let us consider an HFE algorithm, as described in the next sections, with x and y of about 128+32=160

bits.

Let P1; : : : ; Pn be the n public polynomials that give y from x, with n = 160 and K = F2 for example.

If only P1 to P128 of these polynomials are public (the over are secret), then the polynomials P1; : : :P128,

give a value z of 128 bits from a value x of 160 bits.

In our algorithm here z is the hash of a message to sign and x will be the signature of z. When z is

given, then with the secret polynomials P129 to P160 and the other secret values we will be able to �nd

a value x so that from this x, the polynomials P1; : : : ; P128 will give exactly the value z.

For this we will padd z with 32 extra bits and try to �nd an x with a decryption of the HFE algorithm.

If it fails we try with another padding until we succeed.

In �gure 2 we illustrate such a use of HFE in signature.

6

4.2 Example 2

Computation of the signature

In this example 2 to sign a message M there will be three steps.

Step 1. We generate a small integer R with no block of numbers with 10000 in its expression in

base 2 (for example R = 0 to start).

Step 2. We compute h(Rjj10000jjM) where h is a public collision free hash function with an output

of 128 bits (for example h is the MD5 algorithm).

Step 3. We consider an HFE algorithm (as in section 3) with values x and y of 128 bits.

If we take y = h(Rjj10000jjM), then we can (with the secret key) try to �nd a cleartext x so that

HFE(x) = y.

If we succeed, then Rjjx will be the signature of M .

If we do not succeed (because since HFE is not a permutation some value y have no corresponding x)

then we try again at Step 1 with another R (for example with the new R equal to the old R+ 1 if this

new R has no block of 10000 in base 2).

Veri�cation of a signature

The messageM and a signature Rjjx ofM is given. First, we separate R and x (since x has a �x length

of 128 bits this is easy). Then we compute h(Rjj10000jjM) and HFE(x) and the signature is valid if

h(Rjj10000jjM) = HFE(x).

Length of the signature

In this example 2 the length of the signature is not �xed. However in average R will be very small so

that the signature Rjjx will have in average just a few more than 128 bits.

Note. Of course the pattern 10000 is just an example and another pattern P can be chosen. More

precisely the property that we want is that from RjjP jjM we can recover R and M when we know that

R do not have the pattern P . (So the pattern will have at least one 1 and one 0).

4.3 Example 3

Computation of the signature

Step 1, Step 2: These steps are as in example 2 above. We denote by h1 the �rst 64 bits of the

hash value, and by h2 the last 64 bits of the hash value.

Step 3: We consider an HFE algorithm with values x and y of 64 bits. We will denote by F the

public computation of this HFE function, and by F�1 one pre-image of the secret computation (so that

y = F (x)).

We compute S = F�1(h1 � F�1(h2 � F�1(h1))), i.e. we look (with the secrets) if there is at least a

value S such that:

F
�
F (F (S)� h1)� h2

�
= h1: (#)

If we succeed, then RjjS will be the signature of M . If we do not succeed (because HFE is not a

permutation, so that some values have no pre-image), then we go back to Step 1 with another R.

Veri�cation of the signature

The message M and a signature RjjS of M are given. First, we separate R and S (since S has a �xed

length of 64 bits, this is easy). Then we compute h(Rjj10000jjM) = h1jjh2, and the signature is valid

if and only if the equation (#) above is satis�ed.

7

Length of the signature

In this example 3 (as in example 2), the length of the signature is not �xed. However, in average, R

will be very small, so that the signature RjjS will have in average just a little more than 64 bits.

Remark 1: If we allow slower signature veri�cation, it is also possible to have even shorter signatures.

For example, R will not be put in the signature, so that all the small values of R will be tried to verify

a signature. Moreover, we can also decide that only the �rst 32 bits of S are given as the signature: the

32 other bits will have to be found by exhaustive search during a signature veri�cation. In this case,

the signature veri�cation is very slow (it takes a few hours !), but the signatures have only 32 bits !

Remark 2: In this example 3, we assume that the cryptanalyst does not have access to 248:8 = 256

Terabytes of memory. Because, if he had access to such a memory, he could store 248 pairs (y; F�1(y)),

i.e. he could compute F�1 of a value with probability 2�16. He would then generate successively 248

messages and compute the 248 values (h1; h2) of these messages. From these 248 messages, about 232

will be such that F�1(h1) is in his table, and from them, about 216 such that F�1(h2 � F�1(h1)) is in

his table, and �nally about one such that F�1(h1 � F�1(h2 � F�1(h1))) is in his table. Like this, he

has computed a signature with complexity 248 in time and memory.

Remark 3: Of course, by increasing the number of F�1 computations in the de�nition of S, we

will make the attack given in remark 2 less and less e�cient (i.e. its complexity will become closer

and closer to 264), but this is at the cost of more computations in the generation and veri�cation of a

signature. Moreover, it also increases the average number of R values to try to get a signature.

4.4 The basic HFE in authentication

It is well known that each asymmetric algorithm that can be used for ciphering or for signature can

also be used for authentication. So we can use the HFE algorithms for authentication.

For example we can encrypt a challenge with the public polynomials P1; : : : ; Pn, and ask for the clear-

text.

5 Appendix: Resolution of f(x) = y

5.1 The problem

Let f be a polynomial of degree d in Fqn , where q = pm, p prime. Let y 2 Fqn . We want to �nd all

the solutions x 2 Fqn so that f(x) = y.

We will assume that p is small and that the computation of an operation in Fq is very easy (for example

we have stored the tables of � and + in Fq). More precisely the integer m is de�ned such that the

operations in Fpm can be considered as one unit of operation. For example typically m � 8 in practice

on a computer since it is then easy to store the 22m values of the tables of � and +.

5.2 The classical algorithms

There are three classical algorithms for this very general problem: the Berlekamp-Rabin algorithm, the

Berlekamp trace algorithm, and a linearized polynomial algorithm. A description of these algorithms

can be found in [1] pp.17-26 or in [10] chapter 4. We will just give here their expected complexity.

a. The Berlekamp-Rabin algorithm

This algorithm works when p is an odd prime. It is a non-deterministic algorithm. Its expected running

time is 0(nd2 log d log q)Fqn operations. Therefore since (with our choice ofm) a multiplication in Fqn is

in O(n2), it is in O(mn3d2 log d) from a practical point of view. (Faster algorithms exist asymptotically

but this is the practical running time when operations in Fq are easy).

HFE can work with odd prime p but we have mainly studied the case of p = 2. So we have not actually

used the Berlekamp-Rabin algorithm.

8

b. The linearized polynomial algorithm

As we will see in section 7 a careful analysis of the possible linearisation of the polynomial f(x)� y is

important to avoid weak keys.

However, we can always use a linearisation of the polynomial f(x)�y to �nd the solutions x of f(x) = y

when we have the secret key, even if this linearised polynomial is useless for a cryptanalyst.

The algorithm proceeds in three parts.

Part 1. Find a linear multiple A(x) of f(x).

Part 2. Solve A(x) = 0.

Part 3. Test if the solutions found in Part 2 are indeed roots of f .

If the linearisation is made over F2 (i.e. with 1; x; x2; x4; : : :x2
d�1

), then the expected running time for

Part 1 is in O(d3n2), for Part 2 in O(m3n3 + dm2n3), and Part 3 is expected to took negligible time

compared with Parts 1 and 2.

So the total expected time is in O(d3n2 +m3n3 + dm2n3).

c. The Berlekamp trace algorithm

This algorithm is quite e�cient for large extension �elds Fqn , where q is small.

We have only studied the algorithm when q = 2m, but the algorithm is also e�cient for small odd q.

With the same notations as before (i.e. when operations in Fq are the basic operations) the average

expected complexity of the algorithm is in O(mn3d2+ n2d3). (Moreover the algorithm is deterministic

and in the worst cases it will be in O(m2n4d2 +mn3d3)).

5.3 Improved algorithms

a. A modi�ed linearized polynomial algorithm (nice when d is very small)

Following an idea of Van Oorschot and Vanstone (cf [11] or [20]) we can combine a generalization of

the Berlekamp Trace algorithm with an a�ne multiple A(x) of f(x).

For example we can design an algorithm like this:

Step 1. Find an a�ne multiple A(x) of f(x) (as in the linearized polynomial algorithm).

Step 2. Compute B(x) = x2
mn

+ x modulo A(x).

Step 3. Compute C(x) = GCD(A(x); B(x)).

Step 4. Compute GCD(C(x); f(x)) = P (x).

Step 5. If the degree of P is small then solve P (x) = 0 (immediately if degree of P = 1, or with the

Berlekamp Trace algorithm).

If the degree of P is not small then go back to step 2 with a trace function instead of x2
mn

+ x.

The expected time for such an algorithm is in average in O(dmn3 + d3n2). (So the term in n3 is

only dm instead of m3 + dm2). (The expected time are O(d3n2) for step 1, O(dmn3) for step 2,

O(d2n2) for steps 3 and 4, and steps 1,2,3,4 are expected to be dominant in time in average).

b. A modi�ed Trace algorithm (nice when d is not too small)

The Trace functions have a transitivity property:

if K � F � E then TrEjK(�) = TrF=K(TrEjF (�)).

For example if E = F2N , with N even, and if K = F2 and F = F4 then if TrE=K(x) = 0 then

TrE=F (x) = � or �, where F4 = f0; 1; �; �g. So if f(x) is a polynomial with all the roots x so that

TrE=K(x) = 1, then we can try to obtain a factorisation of f with GCD(f(x); TrE=F(x)� �), where

� = � or � (we do not need to try � = 0 or 1).

As another example if N is a multiple of 4 and if f(x) is a polynomial will all its roots x with a constant

Trace over F4 then we can try the Trace over F16 to factor f(x), and only 4 values of this Trace are

possible (instead of 16).

9

More generally we can use the values of the Trace E=Fi, with increasing sub�elds Fi; F1 � F2 : : : to try

to factor f .

So we can design an algorithm like this:

Step 1. Compute and store all the uk = x2
k

mod f(x); 1 � k � mn. Let P (x) = x2
mn

+ x mod

f(x).

Step 2. Compute GCD(P (x); f(x)) = F (x).

Step 3. Compute and store all the vk = uk mod F (x) = x2
k

mod F (x), 1 � k � mn.

Step 4. Try to factor F (x) with some Trace E=Fi with k increasing sub�elds Fi; F1 � : : :Fk, as we

have seen above. (For example k = 4 and F1 = F2; F2 = F4; F3 = F16 and F4 = F256. There are 256

possible values for the trace over F256 but we will only use the values that have a given Trace over F16

corresponding to roots of f with these trace value over F16).

Step 5. If all the roots of F (x) have not been found after Step 4 then we will use the classical Berlekamp

Trace algorithm to achieve the factorisation (i.e. we will use some Tr(�jx)).

The expected average complexity of this algorithm is in O(md2n3).

(Step 1 is expected to be in O(md2n3), Step 2 in O(n2d2) and these two steps are expected to be

dominant in average).

c. von zur Gathen and Shoup algorithm (asymptotically fastest known algorithm)

In [22], von zur Gathen and Shoup present non-deterministic algorithm to solve f(x) = y with a

complexity (d2 + d log(qn))(logd)O(1)Fqn operations.

This is about d2(log d)O(1)n2 + d(logd)O(1)mn3 operations.

5.4 Real simulations

In [12] some running times of some root �nding algorithms, applied to �nd all roots of polynomials

f(x) of degrees d = 10; 20 and 40 have been tabulated for �elds GF (2n) for particular values n, as large

as n = 1013.

For example for n = 130 and d = 20 it took them with a C program 106 seconds on a SUN 3/160. 106

seconds is quiet a long time but it shows that this is feasible. Moreover it seems that no storage of �
and + in a work �eld F2m have been done. If such a storage were done, for example with m = 4 or 8,

then the computation time should be sensibly smaller. von zur Gathen and Shoup algorithm [22] may

also be faster.

5.5 Example of smart card secret key computations

Usually, with HFE, the smartcard performs the public key computations and a computer performs the

secret key computations. However, we can also evaluate the RAM needed and the time to perform a

secret key computation F�1 in a smartcard (in some cases, as in example 3 of signature, three such

F�1 computations are required).

Family 1 of secret key computation

In this family, computations like (x2m+x mod f(x)) (Step 1), and then GCD(A(x); B(x)) (Step 2) are

required, where A(x), B(x) and f(x) are polynomials of degree d.

Step 1 requires about O(dmn3) operations and Step 2 about O(d2n2) operations. If d = 17, m = 2

and n = 32, for example, and if T = 642:2 = 8192 is an evaluation of the number of 8 bits operations

to perform a 512 bits modular multiplication, then Step 1 requires about 136T and Step 2 about 36T .

(To compare with about 768T for a 512 bits RSA secret key computation). In characteristic p = 2, the

RAM required for Step 1 is about (d� 1) times the length of the messages, and for Step 2 about twice

this RAM. For messages of 64 bits and d = 17, this gives about 128 bytes of RAM for Step 1 and 256

bytes of RAM for Step 2.

10

Family 2 of secret key computation

We can also imagine that a linearized polynomial A(x) has been precomputed so we have to solve

A(x) = 0 by Gaussian reductions. In this case, about n3 computations are required for the Gaussian

reductions (' 4T with n = 32), but before the terms in A(x) will have to be evaluated, and this

sometimes requires a lot of time. The RAM needed is about n2

2
elements of Fq (we divide by two

because there is a Gaussian reduction and the equations can be computed one by one). This is about
32:32:2
8:2

= 128 bytes of RAM in our example.

5.6 Conclusion

When n and d are not too big it is always possible to �nd all the roots of f .

One algorithm is expected to be in average in O(mdn3 + d3n2), another to be in average in O(md2n3)

and a von zur Gathen and Shoup algorithm is expected to be in d2(log d)O(1)n2 + d(logd)O(1)mn3.

(Asymptotically these algorithms are faster but these complexities are the complexity for practical

values of m; d; n).

Moreover they are algorithms for very general polynomials f . For special polynomials f (for example

when f has just a few monomials with only one large exponent) much faster algorithms may exist.

(However some of these special polynomials, are weak choices for the basic HFE, as we will see in

section 7).

11

Part II: About the security of the basic HFE

6 Theoretical considerations about the security of the basic HFE

6.1 How to choose the parameters

We have mainly studied HFE in characteristic 2. However, in opposition to the Matsumoto-Imai scheme

of [11] which needed p = 2, with HFE we can have any small prime value for p.

For security of the basic HFE it is necessary that:

1. The message M has at least 64 bits. (If not it is easy to �nd M by exhaustive search). So

when some redundancy is put in x, then x and y may have at least about 128 bits. When the

redundancy is put outside x, then x and y will have at least 64 bits.

2. The number n of variables in the public key is such that d2:7n � or ' 264, where d (= 2 in the basic

HFE) is the degree of the public equations. So n � 23. This comes from the fact that there are

some general Gr�obner-bases algorithms able to compute the solutions of any set of equations of

degree d with n variables with complexity about O(d3n) in theory and about O(d2:7n) empirically

(cf [8]). (Remark : in [11], it was recommended to have n � 32, also to roughly avoid the general

Gr�obner-bases algorithms. However, n � 23 seems to be a more precise evaluation.)

3. The polynomial f must have at least two monomials in x. (If not the basic HFE will be in

fact just a Matsumoto-Imai algorithm and will be attacked as shown in [2]). More generally,

the polynomial f must be chosen in order that the \a�ne multiple attack" that we will describe

in section 7, and the \quadratic attack" that we will study in section 8, will require too much

computations to be performed.

However, it is not always easy to test when these attacks on a polynomial f can be dangerous or not.

So instead of doing that, and in order to avoid all the weak keys, we suggest (in characteristic p = 2)

to choose for f a random \quadratic over F2" polynomial of degree � 33 (i.e. for the degree 33 :

f(x) = x33 + �32x
32 + �24x

24 + �20x
20 + �18x

18 + �17x
17 + �16x

16 + �12x
12

+�10x
10 + �9x

9 + �8x
8 + �6x

6 + �5x
5 + �4x

4 + �3x
3 + �2x

2 + �1x

where all the �i are random elements of F2n), or we suggest the parameters given in the two challenges

of section 24.

Moreover in order to make things even more di�cult for a cryptanalysis we will see in section 11 that

we can eliminate some public polynomials, and add some others.

Length of the public key If f(x) = x17+�x16+�x5+
x4+�x2+"x, where �, �,
, �, " are values

of Fqn , where q = 4 and n = 32, then the length of the public key is about n � n(n�1)
2

� 1
4
' 4 Kbytes.

6.2 Comparison between the basic HFE and Matsumoto-Imai algorithm

The Matsumoto-Imai algorithm of [11] can be seen as a weak key version of the basic HFE algorithms.

The main new ideas that we have introduced in the design of HFE are:

1. Not to have necessary a bijection, since we will be able to encrypt and to sign without bijections.

2. To use the fact that a lot of practical algorithms are known to �nd the roots of a lot polynomials

in a �nite �eld. For example it is always possible to �nd the roots when the polynomial is a

univariate polynomial of not too large degree.

For security HFE may be much stronger than the Matsumoto-Imai algorithm because:

1. The equations found in [13] to attack the Matsumoto-Imai algorithm do not exist in general HFE

schemes. (Moreover we have made simulations to check this point).

12

�
�

��

�
�

�
�

��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

��

�
�

��
�

�

��
��

��
��

���

�
�

�
�

��

�
�

..........................

\basic" HFE

HFE algorithms

(part III of this paper).

Matsumoto-Imai algorithm.

: weak key versions.

Figure 3: The Matsumoto-Imai can be seen as a weak key version of the basic HFE

2. In Matsumoto-Imai algorithm very few possibilities existed for f , so we could assume that f was

public. However in HFE we have much more possible functions f so the cryptanalyst can no

longer assume that f is public.

HFE may still be secure if f is public, since its security may essentially be in the secrets a�ne

functions s and t (this point leads to the IP authentication and signature scheme that we present

in Part IV). The function f is \hidden", by the a�ne functions s and t, as the name HFE shows,

but the function f is not necessary secret. However to keep f secret can only increase the security,

so we actually prefer to recommend to keep f secret.

Note. It is possible to prove that if the two exponents in x of higer degree are �1 and �2, with

�2��1 coprime with qn� 1, then we can assume, without loosing generality, that the coe�cients

in x�1 and x�2 are 1.

3. The fact that some of the Pi polynomials could not be made public could also increase the security

of HFE since the trapdoor is then even more \hidden" (this point will be seen in section 9).

Public key computations are easy in HFE (for example they can easilly be done in low cost smart

cards).

However, from a practical point of view, the basic HFE is slower in secret key computations than

Matsumoto-Imai algorithm since the computation of f�1 is more complex.

6.3 Brassard Theorem

Some authentication algorithms (such as [19] or [20]) are proved to be as secure as a NP-hard problem.

(This is a very nice result of security but of course this is not a proof of absolute security: a problem

can be NP-hard but easy in average, or easy with bad parameters or di�cult only with very large

parameters). Can we also hope to prove that HFE is as secure as a NP-hard problem? No: from a

generalisation of a theorem given by G. Brassard in [2], we can prove that recovering a cleartext from

an encrypted HFE text is never an NP-hard problem (if NP 6= co NP). However this is not really a

aw of HFE, but a property of almost all asymmetric encryption algorithms.

Idea of the proof. Let F be an asymmetric encryption algorithm with a secret key K and a public

key k such that, when the secret key K is given and when a value y is given, it is always very easy to

see if there is or not a cleartext x such that y = Fk(x), i.e. such that y is the encryption of x by the

algorithm F with the public key k. HFE, as all e�cient encryption algorithms (such as RSA) has of

course this property. Now let us consider the problem: \Is there an x such that y = Fk(x)?", where y

is a given value. Then if the answer is \yes", x is a certi�cate that indeed the answer is \yes", i.e. it

is easy to verify that the answer is \yes" if such an x is given (K is also another certi�cate). Moreover

13

if the answer is \no", K is a certi�cate that indeed the answer is \no". So this problem is in NP \co
NP. But (if NP 6= co NP) there is no NP-hard problem in NP \co NP. Similarly if from the secret key

K we can compute easilly all the x such that y = Fk(x), then the problem: \Is there an x such that

y = Fk(x) and a � x � b?", where a and b are two integers, is also in NP \co NP. So recovering a

cleartext x from its corresponding ciphertext y can not be a NP-hard problem. This shows that there is

little hope to design any practical asymmetric encryption algorithm with a security proved to be based

on a NP-hard problem.

It is also instructive to see that RSA may (or may not) be as secure as the factorisation problem because

the factorisation problem is in NP \ co NP (so is not a NP-hard problem).

Comments about Brassard Theorem:

One can think that this result could suggest that when we have introduced a trapdoor in HFE, in

order to have a cryptosystem useful for encryption, we may have weakened the problem. This result

may also suggest that the problem on which the security of HFE relies is not clearly shown (it may

not be the general NP-hard problem of solving randomly selected system of multivariate quadratic

equations over GF (2)). (The same sort of suggestions occured for asymmetric encryption algorithms

based on the knapsack problem, because the knapsack problem is also NP-hard. For example, in [3] p.

506, it is written: \[...] then it seems likely that there is an attack on the Merckle-Hellmann knapsack

cryptosystem that runs faster than algorithms that solve the general knapsack problem").

However, some people in the cryptographic community do not share this idea that Brassard theorem

\suggest" that some attack may exist that runs faster than algorithms to solve a more general NP-hard

problem. And in fact, it is important to notice that the theorem does not give any explicit attack

neither does it prove that some more e�cient attack exist.

Let us consider again the following problem:

Input: A ciphertext message (of a public key cryptosystem) and an integer n.

Question: Is the n-th bit of the corresponding cleartext equal to 1 ?

As seen above, this problem is in NP \co NP, hence it cannot be NP-hard (unless NP = coNP). However,

this remark gives no practical attack and moreover for some asymmetric encryption algorithm, the best

algorithm might be the exhaustive search of the cleartext. So, despite the fact that this problem is not

NP-hard, it might happen that the best algorithm is exhaustive search...

Similarly, in an HFE algorithm, recovering a cleartext from its HFE ciphertext is expected to be

exponentially di�cult when the HFE parameters are properly chosen. (However, despite the fact that

it gives no attack, we believe that it is very relevant to take Brassard theorem into account, because

from this theorem we know that we must not spend time in trying to prove that HFE is as secure as a

NP-hard problem).

6.4 Security Simulations

In order to test the security of the Basic HFE we have made two sets of simulations:

1. Computation of some a�ne (in x) multiple of f(x)� y. This is described in section 7.

2. For n = 17 and n = 22, we have also made Toy simulations in order to see if the attacks given in

[14] could also occur in the Basic HFE. This is described in section 9.

These simulations are useful to detect some weak keys, but they did not give us a way to break the

HFE algorithm for well chosen parameters.

7 The a�ne multiple attack

7.1 Introduction

The \a�ne multiple attack" of the basic HFE that we will consider in this section 7 is a generalization

of the main attack of [14] of the Matsumoto-Imai algorithm.

14

The \quadratic attack" that we will see in section 8, and the \a�ne multiple attack" are the only attacks

that we know against the basic HFE that can sometimes be much better than exhaustive search on the

cleartext.

7.2 Principle of the attack

Let f be a polynomial used in the basic HFE algorithm. Let d be the degree of f . By using a general

algorithm (see for example [1] p. 25) we know that there are always some a�ne (in x) multiple A(x; y)

of the polynomial f(x)� y. (This means that x 7! A(x; y) is an a�ne function and that each solution

x of f(x) = y is also a solution of A(x; y) = 0). A(x; y) can be found by computing 1, x, xq, xq
2

,

..., xq
d�1

mod f(x), and by writing that these d + 1 polynomials are linearly dependent (since they

are in the vector space of dimension d of all polynomials modf(x) (see [1] p. 25 for further details).

Moreover, this shows that the degree of A(x; y) { seen as a univariate polynomial in x { is at most

qd�1. For example in characteristic 2 the polynomial A(x; y) will have at most 1; x; x2; x4; x8 : : : ; x2
d�1

as monomials in x.

From now on we will assume for simplicity that the characteristic is 2.

Moreover, sometimes for such an a�ne multiple A(x; y) all the exponents in y have small Hamming

Weight in base 2. If this occurs, then the polynomial f will be a weak key for HFE.

More precisely if all the exponents in y have a Hamming Weight � k, then there will be an attack with

a Gaussian reduction on O(n1+k) terms (more precisely with about
kX
i=1

n1+i=i! terms because we have

about n1+i=i! terms of total degree i in the yj variables, 1 � i � k) where n is the number of bits of the

message. This attack will work exactly as the attack of [14] for the Matsumoto-Imai algorithm. The

Gaussian reduction needed may be easier than a general Gaussian reduction but the complexity will be

at worst in O(n3k+3) and at least in O(n1+k). Gaussian reductions with N terms are asymptotically

in N! with ! < 2:376 (cf [5]). Moreover we can choose some x but not some y, so in the equations on

which we need to do a Gaussian reduction we will have at least O(n1+2k) unpredictible values. So it

seems that more precisely the Gaussian reduction needed will be at most in O(n(1+k)!) and at least in

O(n1+2k).

7.3 Examples

The examples 1,2 and 3 that we will present are easy. The other examples have been obtained with

the \nullSpace" instruction of AXIOM.

Example 1 (an example of C� permutation): Let f(x) = x3. So x3 = y.

Then x4 = yx.

So A(x; y) = x4 + yx is an a�ne (in x) multiple of f(x) + y, and here all the exponents in y have a

Hamming Weight � 1.

This leads to an attack with a Gaussian reduction on O(n2) terms as described in [14].

Example 2 (the general C� permutation): Let f(x) = x1+2
�

. So x1+2
�

= y.

Then x2
2�

:y = x:y2
�

.

So A(x; y) = x2
2�

y + xy2
�

is an a�ne multiple of f(x) + y, and here also all the exponents in y have a

Hamming Weight � 1.

So this also leads to an attack with a Gaussian reduction on O(n2) terms as described in [14].

Example 3 (an example of Dickson permutation): Let f(x) = x5 + x3 + x = y.

Then it is possible to prove that

y3:x+ (y2 + 1)x4 + x16 = 0

Here all the exponents in y have a Hamming Weight � 2.

So this leads to an attack of the HFE algorithm with a Gaussian reduction on O(n3) terms if this

polynomial f is used.

So this polynomial should not be used (it's a weak polynomial).

15

Remarks 1. If qn � 2 mod 5 or qn � 3 mod 5, then this polynomial f(x) is a permutation: it is a

Dickson polynomial (see [10], chapter 7).

2. This polynomial f will also be studied in section 8.1 for n = 13 and we will also conclude that this

polynomial is weak.

3. We also have y4:x+ (y3 + y)x4 + y:x16 = 0, y5:x+ (y4 + y2)x4 + y2x16 = 0 etc. and the result that

we will see in section 8.2 (i.e. that there are 78 = 6 � 13 independent equations) suggest that 6 such

equations may exist, with a degree one in x and two in y.

Exemple 4 (the general Dickson permutation of degre 5):

Let f(x) = x5 + ax3 + a2x. Then xy3 + x4(a6 + ay2) + x16 = 0.

Here again, all the exponents in y have a Hamming weight � 2. So this also leads to an attack with a

Gaussian reduction on O(n3) terms.

Remark: It is possible to prove that (in characteristic 2) the Dickson permutations of degree � 5

either are not quadratic multivariate polynomials, or are a linear transformation of a C� or of a Dickson

polynomial of degree � 5.

Example 5 (Dobbertin permutation):

Let f(x) = x2
m+1+1 + x3 + x, in the �eld GF (2n), where n = 2m+ 1 is odd. Then:

f(x) = y) x9 + yx6 + x5 + yx4 + (b+ y2)x3 + y2x+ y3 = 0;

where b = y2
m+1

.

Moreover, with MAPLE, we found that:

f(x) = y) xby3 + y4x2 + y2x2b+ x4y2 + x4b2 + x4by2 + x4y4 + x8y2 + x8 + x16 = 0:

(Here, as above, b = y2
m+1

.)

In this a�ne multiple A(x; y) = 0 of f(x), the largest Hamming weight of the exponents in y is 3. As

a result, this leads to an attack with a Gaussian reduction on O(n4) terms if this polynomial f(x) is

used. Therefore, we do not recommend to use this polynomial.

Remarks: 1. Our main motivation to study this polynomial comes from the fact that Hans Dob-

bertin proved that f(x) is a permutation (see [7]).

2. This polynomial f will also be studied in section 8.1 for n = 13, and we will show there that no

relation with Hamming weight � 2 in y and a�ne in x exist. In fact A(x; y) here has a Hamming

weight = 3 in y (so it is indeed � 3).

Example 6:

Let f(x) = x9 + x6 + x5 + x3 + x = y.

Then the a�ne multiple A(x; y) of f(x) of degree 28 in x found by AXIOM is:

(y27 + y24 + y23 + y20 + y19 + y11 + y8 + y7 + y4 + y3)x

+ (y27 + y25 + y21 + y20 + y15 + y9 + y7 + y5 + y4 + y3)x2

+ (y28 + y26 + y25 + y20 + y18 + y16 + y14 + y9 + y8 + y6 + y4 + 1)x4

+ (y22 + y21 + y18 + y16 + y15 + y14 + y13 + y10 + y8 + y7)x8

+ (y25 + y22 + y21 + y19 + y17 + y12 + y11 + y6 + y5)x16

+ (y23 + y20 + y19 + y18 + y17 + y16 + y15 + y14 + y13 + y11 + y10 + y9 + y8 + y6 + y5)x32

+ (y18 + y17 + y14 + y11 + y10 + y9 + y6 + y3)x64

+ (y13 + y11 + y5 + y4 + y3)x128

+ x256:

In A(x; y) the largest Hamming Weight of the exponents in y is 4.

So this leads to an attack with a Gaussian reduction on O(n5) terms if this polynomial is used.

16

This attack will need a lot of power but may be feasible. (For example if n = 64 it will need Gaussian

reduction on 225 variables (' n5=4!) and if n = 128 it will need Gaussian reduction on 230 variables: : :).

So we do not recommend to use this function f . (We have just presented this function in order to show

the increasing complexity of the a�ne multiple attack when di�erent functions are chosen).

Remark. This polynomial f will also be studied in section 8.2 for n = 13 and we will show there

that no relation with Hamming Weight � 2 in y and a�ne in x exist.

In fact A(x; y) here has a Hamming Weight = 4 in y, and this is indeed � 3 as expected.

Example 7:

Let f(x) = x12 + x8 + x4 + x3 + x2 + x = y.

Then one of the a�ne multiple of f(x) found by AXIOM is:

x256 + (y16 + y)x64 + (y8 + y5 + y2)x16 + (y3 + 1)x4

+yx+ y16 + y8 + y5 + y3 + y2 = 0:

Here all the exponents in y have a Hamming Weight � 2.

So this polynomial f should not be used for HFE.

Since the degree of f was not so small (it was 12), and since f had a lot of monomials (6), this example

shows that the a�ne multiple attack has to be taken seriously: it is not always obvious whether it

works or not.

Example 8:

Let f(x) = x17 + x16 + x = y.

Then with AXIOM we have very easilly found 9 indepents a�ne multiple of f(x) + y, and one of this

a�ne multiple is:

x256 + (1 + y + y2 + y3 + : : :y15)x

+ (y + y2 + y3 + : : :+ y15) = 0:
(1):

In this equation the exponent in y with the largest Hamming Weight is 15 and it as a Hamming Weight

of four.

However from (1) is obvious that:

(y � 1)x256+ (y16 � 1)x+ y16 + y = 0: (2):

And in this equation (2) all the exponents in y have a hamming weight � 1.

So this function f is very easy to attack.

Moreover this function f gives a good example that from a a�ne multiple like (1) it may be possible

to found an even more devastating a�ne multiple like (2): : :

Example 9:

Let f(x) = x17 + x9 + x4 + x3 + x2 + x = y.

With AXIOM, we have computed the least a�ne multiple A(x; y) of f(x) + y (it took us two days on

a workstation).

In A(x; y) all the exponents in y are � 3840, and the exponent with the largest Hamming Weight as a

Hamming Weight of 11.

So this a�ne multiple leads to an attack of HFE with this polynomial f with a Gaussian reduction

on O(n12) terms, where n � 64. (For n = 128 it will need Gaussian reduction on 258 terms because

258 ' n12=11! and for n = 64 it will need Gaussian reductions on 247 terms).

Since this attack is completely impracticable, this polynomial f resists to the \a�ne multiple attack"

and may be a strong polynomial for HFE.

17

Example 10:

Let f(x) = x17 + x16 + x5 + x = y.

With AXIOM (also after two days of computations) we have computed the least a�ne multiple A(x; y)

of f(x) + y. In A(x; y) the exponents with the largest Hamming Weight have a Hamming Weight also

of 11.

So this function may also be a strong polynomial for HFE.

Note: What is nice with this function is that this function is not only quadratic over F2 but also

quadratic over F4. (So the public computations will be easier with this function).

Example 11:

Let f(x) = x17 + x16 + x2 + x.

Then the a�ne multiple A(x; y) of f(x) of degree 216 in x found by AXIOM is:

(y3840+ y3634 + y3592 + y3510+ y3480+ y3456+ y3382 + y3352

+y3304 + y3300 + y3274 + y3262 + y3232 + y3216)

+ (y3630+ y3300 + y3270)x

+ (y3292)x2

+ (y3576+ y3246 + y3216)x4

+ (y3634+ y3304 + y3274 + y3184)x8

+ (y3630+ y3615 + y3600 + y3285+ y3255+ y3240)x16

+ (y3592+ y3292)x32

+ (y3576+ y3516 + y3456 + y3246+ y3186+ y3156+ y3126 + y3096)x64

+ (y3514+ y3154 + y3064 + y2944)x128

+ (y3840+ y3615 + y3600 + y3510+ y3480+ y3390+ y3360

+y3285 + y3270 + y3255 + y3240 + y3000)x256

+ (y3382+ y3352 + y3262 + y3232+ y3142+ y3112)x512

+ (y3516+ y3186 + y3156 + y3126+ y3096+ y2646+ y2616 + y2496 + y2166 + y2136)x1024

+ (y3514+ y3184 + y3154 + y3064+ y2944+ y1654+ y1624 + y1024)x2048

+ (y3390+ y3360 + y3000 + 1)x4096

+ (y3142+ y3112)x8192

+ (y2646+ y2616 + y2496 + y2166+ y2136)x16384

+ (y1654+ y1624 + y1024)x32768

+ x65536:

In A(x; y) the largest Hamming Weight of the exponents in y is 8.

So this leads to an attack with a Gaussian reduction on O(n9) terms if this polynomial is used.

This attack is unpractical if n = 128 for example (because it will need Gaussian reduction on 247

variables).

So this polynomial f may be a good choice for HFE.

Moreover this f is not only quadratic over F2 but also over F16, and this will give easier public key

computations.

However, even if A(x; y) is not useful, it has a particulary short expression and this may means that

f(x) is very special, so it's perhaps more risky to choose this f(x) than a random polynomial, quadratic

over F2, and of degree 17.

7.4 Asymptotic complexity

For large d, and for most of the polynomials f of degree d, the degree (in x) of the a�ne multiple

A(x; y) will be qd�1, the largest Hamming weight of the exponents in y is expected to be in O(d), so
that the complexity of the a�ne multiple attack of the basic HFE with this polynomial f is expected

to be in O(nO(d)).

So, if d = O(n) the complexity of the attack is expected to be exponential in n. (Of course public

and secret computations for the legitimate users are polynomials in n, but the attack is expected to be

exponential in n).

18

Moreover, d = O(lnn) is expected to be su�cient to avoid all polynomial attacks.

7.5 Conclusion

The a�ne multiple attack is very e�cient for some very special polynomials. However when the degree

of f is � 17 and when f has enough monomials of Hamming Weight two in x, this attack is expected

to fail completely. Moreover, for some polynomials of practical interest it is even possible to compute

with AXIOM the least a�ne (in x) multiple of these polynomials and to see if the attack will work or

fail with this a�ne multiple.

Note For easier computations, we have chosen in all the examples the constant terms in the monomials

of f equal to 0 or 1.

Of course this is not an obligation and any elements of the extension �eld can be chosen. Moreover

if we want to keep f secret, some secret values for these terms should be chosen. (For example

f(x) = x17 + �9x
9 + : : :+ �0 with the numbers �i 6= 0 and 1).

We can also notice that, when all the constant terms are 0 or 1, then f commutes with x2, x4, x8, ...

Therefore, there will be some linear functions u and v such that v(y) = P (u(x)), where y = P (x) is the

public key. It is not clear whether this may be dangerous, but this can suggest to choose very general

terms and not only 0 and 1.

8 The \quadratic" attack

Idea of the attack

In section 7, we generate some a�ne relations on the bits of the cleartext (when an explicit value for

the ciphertext y is given).

In this section 8, we now study how some quadratic relations on the bits of the cleartext might be

useful in order to recover the cleartext. The motivation is that { as we will see in the tables computed

in section 9 { for many polynomials f , we can indeed obtain more such quadratic relations than we

have in the public key.

Let � be the number of independent quadratic equations obtained on the bits of the cleartext. If � is

larger than, or is approximately
n(n+1)

2
, then by Gaussian reductions on Xij = xi � xj , we will probably

obtain the value x. Moreover, even if � is smaller than
n(n+1)

2
, these equations will give an attack

more e�cient than the exhaustive search on x. We will be able to �nd (by Gaussian reductions on

Xij = xi �xj) about
p
2� variables, so that we will have to perform an exhaustive search on only n�

p
2�

variables.

The \cubic" attack, or higher degree attacks

From a theoretical point of view, we can also imagine to collect some cubic equations in the bits

of the cleartext (or even of higher degree). However, the detection of such equations requires a lot of

computing power, so that we did no simulations on this. Moreover, if we assume that (after maybe a

lot of computations) � cubic equations in xi have been found, then we will have to perform exhaustive

search on n � 3
p
6� variables (instead of n).

9 Toy simulations with small n

9.1 Classi�cation of the equations

Despite the fact that it is a bit boring, we will describe in this section the di�erent families of equations

of total degree two or three that are stable by a�ne transformation on xi and yj variables.

Equations of degree total two and of degree one in x:

19

� [Y 2] are the equations where the only quadratic monomials are in yiyj , i.e.:

X
�ijyiyj +

X
�ixi +

X
�iyi + �0 = 0: [Y 2]

� [XY] are the equations where the only quadratic monomials are in xiyj , i.e.:

X
�ijxiyj +

X
�ixi +

X
�iyi + �0 = 0: [XY]

Note: These equations [XY] were the key idea for the cryptanalysis of C�.

� [XY + Y 2] are the equations where the only quadratic monomials are in xiyj or yiyj , i.e.:

X
�ijxiyj +

X

ijyiyj +

X
�ixi +

X
�iyi + �0 = 0: [XY + Y 2]

Equations of degree total two and of degree two in x:

� [X2] are the equations where the only quadratic monomials are in xixj , i.e.:

X
�ijxixj +

X
�ixi +

X
�iyi + �0 = 0: [X2]

Remark: The vector space of these equations [X2] is of dimension exactly n, whatever the

quadratic functions yi are (because if P (x1; :::; xn) = 0 for all (x1; :::; xn), then P = 0). Therefore,

these equations do not give informations for any attack.

� [X2+ Y 2] are the equations where the only quadratic monomials are in xixj or yiyj , i.e.:

X
�ijxixj +

X

ijyiyj +

X
�ixi +

X
�iyi + �0 = 0: [X2+ Y 2]

� [X2+XY] are the equations where the only quadratic monomials are in xixj or xiyj , i.e.:

X
�ijxixj +

X

ijxiyj +

X
�ixi +

X
�iyi + �0 = 0: [X2 +XY]

� Finally [X2 +XY + Y 2] are the general equations of total degree two, i.e.:

X
�ijxixj +

X

ijxiyj +

X
�ijyiyj +

X
�ixi +

X
�iyi + �0 = 0: [X2 +XY + Y 2]

Equations of total degree three and of degree one in x:

� [Y 3] are the following equations:

X
�ijkyiyjyk +

X
�ijyiyj +

X
�ixi +

X
�iyi + �0 = 0 [Y 3]

� [XY + Y 3] are the following equations:

X
�ijkyiyjyk +

X
�ijyiyj +

X
�ijxiyj +

X
�ixi +

X
�iyi + �0 = 0 [XY + Y 3]

� [XY 2] are the following equations:

X
�ijkxiyjyk +

X
�ijyiyj +

X
�ijxiyj +

X
�ixi +

X
�iyi + �0 = 0 [XY 2]

20

Remark: We will make some simulations with those equations [XY 2]. For any quadratic

functions yi, in the xj variables, we will always have n(n+1) \trivial" equations [XY 2] if K = F2:

they come from y2i = yi and xiy
2

j = xiyj .

� [XY 2 + Y 3] are the following equations:

X
�ijkyiyjyk +

X
�ijkxiyjyk +

X
�ijyiyj +

X

ijxiyj

+
X

�ixi +
X

�iyi + �0 = 0 [XY 2 + Y 3]

Equations of total degree three and of degree two in x:

� [X2+ Y 3] are the following equations:

X
�ijkyiyjyk +

X
�ijyiyj +

X
�ijxixj +

X
�ixi +

X
�iyi + �0 = 0 [X2+ Y 3]

� [X2+XY + Y 3] are the following equations:

X
�ijkyiyjyk+

X
�ijyiyj+

X
�ijxiyj+

X
�ijxixj+

X
�ixi+

X
�iyi+�0 = 0 [X2+XY +Y 3]

� [X2+XY 2] are the following equations:

X
�ijkxiyjyk +

X
�ijyiyj +

X
�ijxiyj +

X
�ijxixj +

X
�ixi+

X
�iyi + �0 = 0 [X2+XY 2]

� [X2+XY 2 + Y 3] are the following equations:

X
�ijkyiyjyk +

X
�ijkxiyjyk +

X
�ijyiyj +

X

ijxiyj

+
X

'ijxixj +
X

�ixi +
X

�iyi + �0 = 0 [X2+XY 2 + Y 3]

� [X2Y] are the following equations:

X
�ijkxixjyk +

X
�ijxixj +

X
�ijxiyj +

X
�ixi +

X
�iyi + �0 = 0 [X2Y]

Remark: We will make some simulations with those equations [X2Y]. For any quadratic

functions yi in the xj variables, we will always have n+
n(n+1)

2
\trivial" equations [X2Y] if K = F2.

They come from the n public equations (i.e. yi =\yi"), from yi�\yi"= yi and from yi�\yj"=\yi"�yj ,
where \yi" and \yj" are written in x. Moreover, if we compute with a representation where x2i
and xi are not the same formal variable, the we will also have the n+n2 trivial equations x2i = xi

and x2i � yj = xi � yj (then it gives n +
3n(n+1)

2
equations).

� [X2Y + Y 3] are the following equations:

X
�ijkyiyjyk +

X
�ijkxixjyk +

X
�ijyiyj +

X

ijxiyj

+
X

'ijxixj +
X

�ixi +
X

�iyi + �0 = 0 [X2Y + Y 3]

� [X2Y +XY 2] are the following equations:

X
�ijkxiyjyk +

X
�ijkxixjyk +

X
�ijxixj +

X

ijxiyj

+
X

'ijyiyj +
X

�ixi +
X

�iyi + �0 = 0 [X2Y +XY 2]

21

Remark We will make some simulations with those equations [X2Y +XY 2]. If K = F2, we

will always have 3n(n+ 1) \trivial" equations of this type (and n2 if K = Fpm with p 6= 2).

� [X2Y +XY 2 + Y 3] are the following equations:

X
�ijkyiyjyk +

X
�ijkxiyjyk +

X
�ijkxixjyk +

X
�ijyiyj

+
X

ijxiyj +
X

'ijyiyj +
X

�ixi +
X

�iyi + �0 = 0 [X2Y +XY 2 + Y 3]

Equations of total degree three and of degree three in x:

� [X3] are the following equations:

X
�ijkxixjxk +

X
�ijxixj +

X
�ixi +

X
�iyi + �0 = 0 [X3]

Remark: For all quadratic functions yj , the vector space of those equations has always dimen-

sion exactly n (because if P (x1; :::; xn) = 0 for all (x1; ::; xn), then P = 0). As a result, those

equations give no informations for any attack.

� [X3+XY] are the following equations:

X
�ijkxixjxk +

X
�ijxixj +

X
�ijxiyj +

X
�ixi +

X
�iyi + �0 = 0 [X3 +XY]

Remark: For all quadratic functions yj , the vector space of those equations has always dimen-

sion exactly n2+n (because if P (x1; :::; xn) = 0 for all (x1; ::; xn), then P = 0). As a result, those

equations give no informations for any attack.

� [X3+ Y 2] are the following equations:
X

�ijkxixjxk +
X

�ijxixj +
X

�ijyiyj +
X

�ixi +
X

�iyi + �0 = 0 [X3 + Y 2]

� [X3+XY + Y 2] are the following equations:
X

�ijkxixjxk+
X

�ijxixj+
X

�ijxiyj+
X

�ijyiyj+
X

�ixi+
X

�iyi+�0 = 0 [X3+XY +Y 2]

� [X3+ Y 3] are the following equations:

X
�ijkyiyjyk +

X
�ijkxixjxk +

X
�ijyiyj +

X
'ijxixj

+
X

�ixi +
X

�iyi + �0 = 0 [X3 + Y 3]

� [X3+ Y 3 +XY] are the following equations:

X
�ijkyiyjyk +

X
�ijkxixjxk +

X
�ijyiyj +

X

ijxiyj

+
X

'ijxixj +
X

�ixi +
X

�iyi + �0 = 0 [X3 + Y 3 +XY]

� [X3+XY 2] are the following equations:

X
�ijkxiyjyk +

X
�ijkxixjxk +

X
�ijxixj +

X

ijxiyj

+
X

'ijyiyj +
X

�ixi +
X

�iyi + �0 = 0 [X3+XY 2]

� [X3+X2Y] are the following equations:
X

�ijkxixjyk +
X

�ijkxixjxk +
X

�ijxixj +
X

ijxiyj

+
X

�ixi +
X

�iyi + �0 = 0 [X3+X2Y]

22

� [X3+X2Y + Y 2] are the following equations:

X
�ijkxixjyk +

X
�ijkxixjxk +

X
�ijxixj +

X

ijxiyj

+
X

'ijyiyj +
X

�ixi +
X

�iyi + �0 = 0 [X3 +X2Y + Y 2]

� [X3+XY 2 + Y 3] are the following equations:

X
�ijkyiyjyk +

X
�ijkxiyjyk +

X
�ijkxixjxk +

X
�ijyiyj

+
X

ijxiyj +
X

'ijyiyj +
X

�ixi +
X

�iyi + �0 = 0 [X3+XY 2 + Y 3]

� [X3+X2Y + Y 3] are the following equations:

X
�ijkyiyjyk +

X
�ijkxixjyk +

X
�ijkxixjxk +

X
�ijyiyj

+
X

ijxiyj +
X

'ijyiyj +
X

�ixi +
X

�iyi + �0 = 0 [X3+X2Y + Y 3]

� [X3+X2Y +XY 2] are the following equations:

X
�ijkxiyjyk +

X
�ijkxixjyk +

X
�ijkxixjxk +

X
�ijyiyj

+
X

ijxiyj +
X

'ijyiyj +
X

�ixi +
X

�iyi + �0 = 0 [X3 +X2Y +XY 2]

� Finally, [X3 +X2Y +XY 2 + Y 3] are the following equations:

X
�ijkxixjxk +

X
�ijkxiyjyk +

X
�ijkxixjyk +

X
'ijkyiyjyk +

X
�ijxixj

+
X

ijxiyj +
X

�ijyiyj +
X

�ixi +
X

�iyi + �0 = 0 [X3 +X2Y +XY 2 + Y 3]

9.2 Simulations with n = 17

For n = 17 and K = F2 we have made some \Toy simulations" in order to see if the attacks given in

[14] could also occur in the basic HFE and to test if the attacks of sections 7 and 8 are e�cient or not

on some explicit polynomials f . More precisely we have computed the exact number of independent

equations [XY], [XY 2], [X2Y] and [X2Y +XY 2], in order to compare the values obtained for various

polynomials f from the values given for random quadratic functions (with no trapdoor).

[XY] was chosen because the cryptanalysis of the Matsumoto-Imai C� algorithm is mainly based on

these equations [XY].

[XY 2] was chosen because these equations are a�ne in x, so that each (non-trivial) equation [XY 2]

gives some information on x.

[X2Y] was chosen because equations [X2Y] are often critical in some variations of the C� algorithm

(as in the two rounds of C�, or as in the C��+ algorithm studied in [17]).

[X2Y + XY 2] was chosen in order to see if we obtain more equations or not that [XY 2] with these

equations.

The results are given in table 1 below (this table was computed by Nicolas Courtois). The value [�]

means that we obtain a vector space of dimension � when a random explicit value is given for y.

23

f(x) [XY] [XY 2] (-306) [X2Y] (-476) [X2Y +XY 2] (-918) Family

x3 34 [16] 612 [16] 578 [153] 1428 [153] C�

x5 17 [16] 340 [16] 442 [153] 1275 [153] C�

x5 + x3 + x 0 [0] 102 [16] 289 [135] 918 [135] Dickson

x9 + x6 + x5 + x3 + x 0 [0] 0 [0] 187 [117] 561 [117] Non bijective

x12 + x5 + x3 1 [1] 18 [1] 170 [131] 527 [148] Non bijective

x12 + x9 + x6 + x5 + x 0 [0] 0 [0] 170 [117] 527 [117] Non bijective

x17 + x9 + x4 + x3 + x2 + x 0 [0] 0 [0] 153 [136] 697 [136] Non bijective

x17 + x16 + x2 + x 0 [0] 0 [0] 357 [153] 1156 [153] Non bijective

x17 + x16 + x5 + x 0 [0] 0 [0] 187 [153] 731 [153] Non bijective

x24 + x10 + x5 0 [0] 0 [0] 119 [134] 442 [153] Non bijective

x66 + x34 + x24 + x6 + x 0 [0] 0 [0] 1 [18] 1 [18] Non bijective

x129 + x3 + x 0 [0] 0 [0] 205 [137] 749 [137] Dobbertin

f1 (degree 17) 0 [0] 0 [0] 68 [85] 136 [114] Non bijective

f2 (degree 24) 0 [0] 0 [0] 68 [85] 119 [132] Non bijective

f3 (degree 33) 0 [0] 0 [0] 0 [17] 0 [17] Non bijective

g1 (degree 17) 0 [0] 0 [0] 170 [151] 714 [151] Non bijective

g2 (degree 32) 0 [0] 0 [0] 153 [136] 697 [136] Non bijective

g3 (degree 128) 0 [0] 0 [0] 17 [34] 306 [34] Non bijective

g4 (degree 257) 0 [0] 0 [0] 0 [17] 0 [17] Non bijective

h1 (degree 17) 0 [0] 0 [0] 323 [150] 1156 [150] Non bijective

h2 (degree 32) 0 [0] 0 [0] 323 [151] 1156 [151] Non bijective

h3 (degree 272) 0 [0] 0 [0] 153 [136] 731 [151] Non bijective

h4 (degree 4352) 0 [0] 0 [0] 17 [34] 323 [51] Non bijective

h5 (degree 65537) 0 [0] 0 [0] 0 [17] 0 [17] Non bijective

Random quadratic 0 [0] 0 [0] 0 [17] 0 [17] No trapdoor

Table 1 with n = 17.

� f1 is a random polynomial of degree 17 with Hamming Weight two in x over F2, i.e.:

f1(x) = x17+�16x
16+�12x

12+�10x
10+�9x

9+�8x
8+�6x

6+�5x
5+�4x

4+�3x
3+�2x

2+�1x;

where the �i are random elements of F2n .

� f2 is a random polynomial of degree 24 with Hamming Weight two in x over F2, i.e.:

f2(x) = x24 + �20x
20 + �18x

18 + �17x
17 + �16x

16 + �12x
12 + �10x

10

+�9x
9 + �8x

8 + �6x
6 + �5x

5 + �4x
4 + �3x

3 + �2x
2 + �1x;

where the �i are random elements of F2n .

� f3 is a random polynomial of degree 33 with Hamming Weight two in x over F2, i.e.:

f3(x) = x33 + �32x
32 + �24x

24 + �20x
20 + �18x

18 + �17x
17 + �16x

16 + �12x
12

+�10x
10 + �9x

9 + �8x
8 + �6x

6 + �5x
5 + �4x

4 + �3x
3 + �2x

2 + �1x;

where the �i are random elements of F2n .

� g1 is a random polynomial of degree 17 with Hamming Weight two in x over F4, i.e.:

g1(x) = x17 + �16x
16 + �8x

8 + �5x
5 + �4x

4 + �2x
2 + �1x;

where �1, �2, �4, �5, �8, �16 are random elements of F2n .

� g2 is a random polynomial of degree 32 with Hamming weight two in x over F4, i.e. with degrees

1, 2, 4, 5, 8, 16, 17, 20, 32.

24

� g3 is a random polynomial of degree 128 with Hamming weight two in x over F4, i.e. with degrees

1, 2, 4, 5, 8, 16, 17, 20, 32, 64, 65, 68, 80, 128.

� g4 is a random polynomial of degree 257 with Hamming weight two in x over F4, i.e. with degrees

1, 2, 4, 5, 8, 16, 17, 20, 32, 64, 65, 68, 80, 128, 256, 257.

� h1 is a random polynomial of degree 17 with Hamming Weight two in x over F16, i.e.:

h1(x) = x17 + �16x
16 + �2x

2 + �1x;

where �1, �2, �16 are random elements of F2n .

� h2 is a random polynomial of degree 32 with Hamming Weight two in x over F16, i.e.:

h2(x) = x32 + �17x
17 + �16x

16 + �2x
2 + �1x;

where �1, �2, �16 and �17 are random elements of F2n .

� h3 is a random polynomial of degree 272 with Hamming Weight two in x over F16, i.e.:

h3(x) = x272 + �257x
257 + �256x

256 + �32x
32 + �17x

17 + �16x
16 + �2x

2 + �1x;

where the �i are random elements of F2n .

� h4 is a random polynomial of degree 4352 with Hamming Weight two in x over F16, i.e. with

degrees 1, 2, 16, 17, 32, 256, 257, 272, 512, 4096, 4097, 4112, 4352.

� h5 is a random polynomial of degree 65537 with Hamming Weight two in x over F16, i.e. with

degrees 1, 2, 16, 17, 32, 256, 257, 272, 512, 4096, 4097, 4112, 4352, 8192, 65536, 65537.

� \Random quadratic" stands for 17 randomly chosen quadratic equations (with no trapdoor).

Interpretation of the results

For a well chosen polynomial f(x), equations [XY] and [XY 2] do not give any attack.

The number of equations [X2Y] is a bit higher than expected. To avoid attacks based on [X2Y], a

degree � 33 is recommended.

The equations [X2Y +XY 2] do not give better attacks than [X2Y], except for very special polynomials.

9.3 Simulations with n = 22

The examples above were also studied with n = 22. The results are given in table 2 below (this table

was also computed by Nicolas Courtois).

25

f(x) [XY] [XY 2] (-506) [X2Y] (-781) [X2Y +XY 2] (-1518) Family

x3 44 [20] 1012 [20] 968 [251] 2398 [251] C�

x5 22 [20] 550 [20] 682 [253] 2090 [253] C�

x9 22 [20] 528 [20] 726 [251] 2112 [251] C�

x17 22 [20] 528 [20] 748 [253] 2134 [253] C�

x33 22 [20] 550 [20] 748 [251] 2134 [251] C�

x5 + x3 + x 0 [0] 132 [18] 374 [172] 1408 [172] Dickson

x9 + x6 + x5 + x3 + x 0 [0] 0 [0] 242 [150] 836 [151] Non bijective

x12 + x5 + x3 1 [1] 23 [1] 220 [174] 792 [192] Non bijective

x12 + x9 + x6 + x5 + x 0 [0] 0 [0] 220 [150] 792 [151] Non bijective

x17 + x9 + x4 + x3 + x2 + x 0 [0] 0 [0] 198 [176] 1122 [176] Non bijective

x17 + x16 + x2 + x 0 [0] 0 [0] 418 [198] 1782 [198] Non bijective

x17 + x16 + x5 + x 0 [0] 0 [0] 220 [192] 1144 [193] Non bijective

x24 + x10 + x5 0 [0] 0 [0] 132 [152] 738 [169] Non bijective

x66 + x34 + x24 + x6 + x 0 [0] 0 [0] 1 [23] 1 [23] Non bijective

x129 + x3 + x 0 [0] 0 [0] 264 [176] 1188 [176] Non bijective

f1 (degree 17) 0 [0] 0 [0] 88 [110] 176 [149] Non bijective

f2 (degree 24) 0 [0] 0 [0] 88 [110] 154 [174] Non bijective

f3 (degree 33) 0 [0] 0 [0] 0 [22] 0 [22] Non bijective

g1 (degree 17) 0 [0] 0 [0] 176 [154] 1100 [154] Non bijective

g2 (degree 32) 0 [0] 0 [0] 132 [110] 1056 [110] Non bijective

g3 (degree 128) 0 [0] 0 [0] 22 [44] 506 [44] Non bijective

g4 (degree 257) 0 [0] 0 [0] 0 [22] 0 [22] Non bijective

h1 (degree 17) 0 [0] 0 [0] 352 [198] 1760 [198] Non bijective

h2 (degree 32) 0 [0] 0 [0] 286 [154] 1694 [154] Non bijective

h3 (degree 272) 0 [0] 0 [0] 88 [66] 1012 [66] Non bijective

h4 (degree 4352) 0 [0] 0 [0] 22 [44] 506 [44] Non bijective

h5 (degree 65537) 0 [0] 0 [0] 0 [22] 0 [22] Non bijective

Random quadratic 0 [0] 0 [0] 0 [22] 0 [22] No trapdoor

Table 2 with n = 22.

Interpretation of the results

For a well chosen polynomial f(x), equations [XY] and [XY 2] do not give any attack. Similarly, for

well chosen polynomials f(x), the number of equations [X2Y] will be similar to the number obtained

with truly random quadratic functions (with no trapdoor). However, this condition on [X2Y] is more

restrictive than the similar condition on [XY 2].

Remark: To see how some equations [X2Y] or [X2Y +XY 2] can be useful for an attack, see section

8.

10 Examples of attacks that do not work

In [15] I have presented some attacks that work very well against some asymmetric cryptosystems with

multivariate polynomials (and a hidden monomial). So a natural question is: do these attacks also

work against HFE ? In this section, we will see why it seems that these attacks do not work against

HFE.

10.1 First example of an attack that does not work

For the cryptanalysis of the basic HFE, we can think to do this attack in 5 steps. (We will see below

that this attack do not really work.)

26

Step 1. We compute the vector space of all the equations

X

ijkxixjxk +

X
�ijxixj +

X
�ijxiyj +

X
�ixi +

X
�iyi + �0 = 0 [X3 +XY]

Step 2. We isolate the terms in xiyj . We have like this some expressions d1; : : : ; dk.

Step 3. We compute the vector space of the linear transformations C and D such that the transfor-

mation C on d = (d1; :::; dk) has the same e�ect as the transformation D on x. (We give more details

about this step 3 below).

Step 4. Similarly, we compute the vector space of the linear transformations C0 and D0 such that the

transformations C0 on d has the same e�ect as the transformation D0 on y.

Step 5. From step 3, the idea of the cryptanalysis is to �nd the analogy of a multiplication on the yi
variables, and from step 4 the analogy of a multiplication on the xi variables.

Now from these multiplications we may �nd the analogy of the secret function f and we may be

able to compute x from y with this analogy.

Example.

Let b = f(a) = a17 + a16 + a5 + a be the secret and hidden equation.

Let B = a5.

Then a16:B = a:B4: (1).

Moreover, B = b� a17 � a16 � a: (2).

So from (1) and (2) we have: a16(b� a17 � a16 � a) = a(a5)4: (3).

This equation (3) will be in the space found in step 1 (i.e. it will give some equations [X3 +XY]).

Moreover the terms in xiyj in this equation (3) come from a16:b, and for each � 2 K we have (�a16):b =

a16(�b) = �(a16:b) (4).

From (4), can we say that steps 3, 4 and 5 will succeed, i.e. that we will �nd the vector space for (C;D)

and (C0; D0) and that these vector spaces will be of dimension n (because we have n degree of liberty

for �) ?

No. Because in step 1 equation (3) will be mixed with all the multiplication of the n public equations

by each xi; 1 � i � n. So for (C;D) we will have much more solutions than only the multiplication by

an element � of K.

Remark. More precisely, in step 1 we will �nd exactly the vector space (of dimension n(n + 1))

generated from the n original public equations, and these equations multiplied by xi, and nothing else.

(This is because we will �nd at least this vector space of dimension n(n + 1), and exactly this vector

space, because if we had more equations, then by Gaussian reductions, we would have a polynomial P

such that P (x1; :::; xn) for any (x1; :::; xn). But this implies P = 0). As a result, no information for an

attack can be obtained from equations [X3+XY] (unlike equations [XY], [XY 2], [X2Y] of the above

section, where the dimensions of the vector spaces were di�erent for random quadratic functions of for

C� or some special functions).

10.2 Another attack that does not work

Example: Let b = f(a) = a17+a5 +a. When a17 7! �a17, and a5 7! �a5, and a 7! �a, then b 7! �b.

So we may try to �nd some linear transformations (C;D), such that the e�ect of C on the \quadratic

expressions in xi in the public equations" is the same as the e�ect of D on the values y1, ..., yn.

In [15], a similar attack is done, and works very well against some asymmetric cryptosystems, but here

it does not work because the \quadratic expressions in xi in the public equations" are exactly y1, ...,

yn, so we will �nd all (C;D) solutions where D = C, and where C is any linear transformation (not

only the transformations \multiplication by �").

27

Part III: HFE variations

11 Three simple variations

11.1 Less public polynomials

The polynomials (P1; : : : ; Pn) of the \basic" HFE algorithm give y from x. However, it is possible to

keep secret some of these polynomials. Let k be the number of these polynomials Pi that we do not

give in the public key, so that only P1, P2, ..., Pn�k are public.

� In an encryption scheme, k must be small, because in order to recover x from y, we will compute

the 2km possibilities for y, compute all the corresponding possible x, and �nd the good x thanks

to the redundancy.

When m is very small, for example when m = 1 or 2, and when k is very small, for example with

k = 1 or 2, this is clearly feasible.

� In a signature scheme, k may be much larger. However, we must still have enough polynomials

Pi in order that the problem of �nding a value x, whose images by P1, ..., Pn�k are given values,

is still intractable. A value k = 1, 2, or k = n
2
for example may be practical and e�cient.

Note: This idea to keep secret some polynomials Pi may increase, or not, the security of some

schemes. In Part IV, we will study the cryptanalytic e�ects of this idea on the original C� scheme.

11.2 Introducing some random polynomials

Let Pi be the public polynomials in x1, x2, ..., xn, of a \basic" HFE scheme.

We can imagine to introduce some random extra quadratic polynomials Qi in x1, ..., xn, and to mix

the polynomials Qi and Pi with a secret a�ne bijection in the given public key. Let k be the number

of these Qi polynomials.

� In a signature scheme, k must be small, because for a given x, the probability to satisfy these

extra Qi equations is
1

2km
. When m and k are small, the scheme is e�cient: after about 2km tries,

we will obtain a signature.

� In an encryption scheme, k may be much larger. However, the total number k + n of quadratic

public equations must be such that the problem of �nding x from a given y is still intractable

(hence k + n must be <
n(n+1)

2
, because with

n(n+1)
2

equations, the values xixj will be found by

Gaussian reductions, and then the values xi will be found). A value k = 1, 2 or k = n
2
for example

may be practical and e�cient.

Note 1: This idea of introducing some random polynomials may increase, or not, the security of

some schemes.

Note 2: Of course, it is possible to combine the variations of section 10.1 and 10.2. For example,

it is possible to design a signature or an encryption scheme from a \basic" HFE with polynomials P1,

..., Pn, by keeping Pn secret, introducing a random polynomial Qn instead of Pn, and computing the

public key as a secret a�ne transformation of P1, ..., Pn�1, Qn.

11.3 Introducing more xi variables

In signature, it is easy to introduce more xi variables. In a \basic" HFE scheme, we have b = f(a),

where:

f(a) =
X
i;j

�ija
q
�ij+q

'ij
+
X
i

�ia
q�i + �0; (1)

where �ij , �i and �0 are elements of Ln.

Let a0 = (a01; :::; a
0
k) be a k-uple of variables of K.

28

In (1), let now �i be an element of Ln such that each of the n components of �i in a basis is a secret

random linear function of the variables a01, ..., a
0
k.

And in (1), let now �0 be an element of Ln such that each one of the n components of �0 in a basis is

a secret random quadratic functions of the variables a0
1
, ..., a0k.

Then, the n+ k variables a1, ..., an, a
0
1
, ..., a0k, will be mixed in the secret a�ne bijection s in order to

obtain the variables x1, ..., xn+k .

And, as before, t(b1; :::; bn) = (y1; :::; yn), where t is a secret a�ne bijection.

Then the public key is given as the n equations yi = Pi(x1; :::; xn+k).

To compute a signature, the values a01, ..., a
0
k will simply be chosen at random. Then, the values �0

and �i will be computed. Then, the monovariate equation (1) will be solved (in a) in Ln.

Note: This ideas, as before, may or may not increase the security of some schemes.

12 HFE with a multivariate hidden equation

In this section another variation of the HFE algorithm will be shown.

Here the idea is to change the description of the function f given in section 2.1.

We can notice that what we need for f is that:

1. In a basis, f is a multivariate quadratic function.

2. For any value a, it is easy to �nd all the x so that f(x) = a.

3. f is a function Kn ! Kn with numbers in Kn with at least 64 bits.

The solution given in part I was to choose for f a polynomial in only one variable x over Kn so that,

in a basis, f is a multivariate quadratic function.

However we can imagine a lot of di�erent solutions than that for f .

For example we can imagine that f is a polynomial in two variables, x1 and x2, so that:

1. In a basis, the expression of f is still a multivariate polynomial of total degree two.

2. For any a, it is possible to �nd all the x1; x2 so that f(x1; x2) = a.

Example

For example let us assume that n = 128 and q = p = 2, so K = F2.

Let f :
K64 �K64 ! K64 �K64

(x1; x2) 7! (y1; y2)

such that:
y1 = x4

1
+ x1x2 + x2 (1)

y2 = x171 + x41x2 + x32 (2)

(This is just an example. We do not recommend this speci�ed function f).

Then in order to �nd (x1; x2) from (y1; y2) we can proceed like this:

from (1) we have:

x2 =
y1 � x4

1

x1 + 1
(3)

Then from (2) we have:

y2(x1 + 1)3 = x17
1
(x1 + 1)3 + x4

1
(y1 � x4

1
)(x1 + 1)2 + (y1 � x4

1
)3: (4)

Now we can notice that (4) is a polynomial equation with only one variable x1 in a �nite �eld. So it is

possible to �nd x1, and then from (3) we will �nd x2.

An advantage of such a scheme is that the secret computations may be easier than the secret compu-

tations of the Basic HFE, because in the equation (4) the variable x1 has only n=2 bits instead of n

bits for the Basic HFE.

29

More general cases

More generally, polynomials with 3, 4 or more variables can be used so that an algorithm of inversion

of f exists and the expression of f in a basis is quadratic.

Moreover a lot of di�erent algorithms are known to �nd the roots of speci�c multivariate polynomials

in a �nite �eld (for example Grobner basis, or speci�c algorithms in Algebric Geometry) and each of

this algorithm could lead to a speci�c HFE algorithm.

13 HFE with more than one branch, and HRE: Hidden Ring Equa-

tions

13.1 HFE with more than one branch

In analogy with the Matsumoto-Imai algorithm of [11] we can imagine a HFE algorithm with more

than one branch in order to have easier secret computations.

Let d be the number of branchs. The algorithm proceeds like this:

1. The �rst a�ne transformation s is performed on x obtaining a = s(x).

2. The value a obtained is splitted in d \branchs", a = a1jja2 : : : jjad (where jj is the concatenation
function).

3. Then b1 = f1(a1); : : : ; bd = fd(ad) are computed, where f1; : : : ; fd are d functions as in section

2.1.

4. The last a�ne transformation t is performed on b = b1jj : : : jjbd, obtaining y = t(b).

If we could have very short branchs (for example if we could have branchs which manipulate values ai
of less than 16 bits) then the algorithm would be really very e�cient. However it can be proved that

for the security of the scheme each branch must manipulate values ai of at least 64 bits. We do not give

too many details here because in the paper [16] written with Louis Goubin, we give a detailed analysis

of all the cryptanalysis of short branchs that we have found.

So for 128 bit messages for example there is no more than 2 branches. So there cannot be a lot of small

branches, so the main practical interests of more than one branch have disappeared.

So in conclusion we do not recommend to use more than one branch in HFE.

13.2 HRE: Hidden Rings Equations

In section 2.1 we said that the �eld LN is typically K[X]=(iN(X)), where iN(X) is an irreductible

polynomial over K.

If iN (X) is not irreductible, then L0
N = K[X]=(iN(X)) will then not be a �nite �eld, but a �nite ring.

In such a space the resolution of f(x) = y, where f is a univariate polynomial is still feasible. For

example the linearized polynomial algorithm still works.

So we can design an asymmetric scheme in such a space exactly as HFE in the �nite �eld LN .

We can call such an algorithm HRE for Hidden Rings Equations. However it seems that we obtain no

advantage to use HRE instead HFE.

14 HFE with s and t with values in a sub�eld

In order to have a smaller value for the length of the public key, an idea is to have a public key with

all the values of the coe�cients in a sub�eld k of K = Fq = Fpm . In order to achieve this:

1. The values of the matrices of s and t will be chosen if k.

2. The irreducible polynomial ' such that Fqn ' Fq[X]='(X)will be chosen in k[X].

3. The polynomial f will also be chosen in k[X].

30

To obtain condition (2), we will choose n such that GCD(n;m) = 1 because it is possible to prove

that is ' is a polynomial of Fp[X] of degree n, irreducible on Fp and if GCD(n;m) = 1, then ' is also

irreducible over Fpm . At the present, it is not clear whether restricting HFE with conditions (1), (2)

and (3) is dangerous for its security or not.

Example: Let k = F2, K = F256, n = 29. Then the length of the public key is 29 �(29�30
2

) �(1
8
) = 1:54

Kbytes (instead of 12.3 Kbytes if k = K = F256).

Remark: Since here f 2 k[X], f will commute with all the Frobenius functions of Fqn [X] that are

invariant over k. However, it is not clear whether such a property can be useful for a cryptanalysis.

15 Concatenation of two basic HFE or HRE for fast decryptions

The scheme

Let x be the cleartext. Let y1 = HFE1(x) be the encryption of x with a �rst HFE encryption with

secret a�ne functions s1 and t1.

Let y2 = HFE2(x) be the encryption of x with another HFE, such thatHFE1 and HFE2 have di�erent

polynomials f1 and f2 and independent secret a�ne functions t1 and t2, but the same extension �eld

LN , and the same secret a�nes functions s1 = s2.

Then let y1jjy2 be the encryption of x, where jj is the concatenation function.

Speed of decryption

The main advantage of this scheme is that decryption with the secret keys may be very fast, as we

will see now. From y1 and y2, f1(a) and f2(a) will be obtained, and then GCD(f1(a); f2(a)) will be

computed. Then from this GCD the value of a will be obtained with one of the classical algorithm of

resolution of equation (like in section 5). Then x = s�1
1
(a) will be obtained.

In average the time of computation of GCD(f1(a); f2(a)) is expected to be dominant.

This time is � O(d2n2), where d = sup(d1; d2). So if d1 and d2 are not too large decryption will really

be very fast (and much faster than in the basic HFE).

Asymptotic speed

From a theoretical point of view, when n is very large d = O(ln n) is expected to be su�cient to avoid

all the polynomials-time attacks, for well chosen polynomials f1 and f2 with degree (f1) � d and degree

(f2) � d.

Moreover when n is very large a multiplication in Ln requieres only O(n ln n) computations (and not

O(n2)).
So the complexity of decryption with the secret key of the scheme of this section 10 will be � 0(n ln3 n)

asymptoticaly with well chosen f1 and f2.

This is really very fast (for example the decryption with the secrets of RSA and of most public key

scheme is asymptoticaly � 0(n2 ln n).

Security

In this scheme we have only encrypt x with two di�erent but not independent HFE to recover x from

y1jjy2 (these two HFE are not independents since s1 = s2).

However it is not recommended generally in cryptography to encrypt the same message twice by two

di�erent encryptions. Moreover this is generally particulary not recommended when the two encryptions

are not independents. So if this algorithm is really used we recommend to be extra-careful in the choice

of the polynomials f1 and f2. For example not only f1 and f2 should avoid the \A�ne multiple attack"

of Part II, section 7, but also f1 + f2.

However if great care are done in the selection of f1 and f2 it seems that this scheme may be secure.

31

Variations

Of course, instead of a concatenation of two HFE, which gives y1jjy2, we can also choose an output

which is an a�ne and bijective secret transformation of y1jjy2. (However this do not change a lot of

thing both for secret key computations and from a cryptanalitic point of view).

16 HFE with public polynomials of degree � 3

Of course we can also choose for f a polynomial with some exponents in x of Hamming Weight still

small but � 3.

A very important subcase is when this function is f(x) = x1+2
�
+2

'

, i.e. with only one monomial and

Hamming Weight 3. The study of these functions is one of the main subject of [15].

17 The \C��" algorithm

In order to repair the Matsumoto-Imai scheme we have suggested three transformations:

1. To have only one branch (cf section 11).

2. To change the function f in order to avoid the \a�ne multiple attack" (cf section 7).

3. To keep secret some polynomials Pi.

We have suggested to do these three transformations. However in the \Basic HFE" just 1 and 2 are

done and the \Basic HFE" may be secure despite the fact that 3 is not done.

We can also ask ourselves what happens if we just do the transformations 1 and 3, and not the

transformation 2, i.e. if f(x) = x1+2
�

, as in the Matsumoto-Imai algorithm. The main interest of doing

that is that with such function f the computation of f�1 is easier. So the secret key computations may

be easier.

We call this candidate algorithm C�� because we have just removed a few equations compared to the

original C� algorithm. A priori, C�� does not seem to be a very strong way to repair the C� scheme !

The analysis of C�� (and other variations around C�) is done in the paper [17]. In this paper [17], we

show that when the number r of equations removed is small (typically when qr � 240), then the scheme

is still insecure, which is not too surprising. However, when qr � 264, our cryptanalysis of [17] is not

e�cient. The scheme is then called C���. The C��� scheme cannot be used for encryptions any more,

but this scheme is still a very e�cient scheme for signatures, and its security is an open problem !

32

Part IV: IP: Isomorphisms of Polynomials

18 IP with two secrets s and t

Introduction

We will now present a new authentication and signature scheme called \Isomorphism of Polynomials"

(IP).

IP has a few nice properties:

� We know exactly the problem on which the security of the scheme relies (it is the problem of

�nding an isomorphism of quadratic or cubic equations).

� The scheme is very symmetric, and the design of the scheme is very similar to the well known

\Graph Isomorphism Authentication scheme" (cf [18] for example).

� IP authentications are proved to be zero-knowledge.

� No hash functions are needed for the authentications.

� IP illustrates the fact that if in HFE the function f is public the HFE scheme may be still secure.

Moreover IP is not only a scheme of theoretical interest: as we will see, with some well chosen parameters

it is an e�cient algorithm for authentications and signatures. (However, unlike HFE, it seems that IP

can not be used for encryptions).

Note: In this part V, we will present IP and how to use it in order to design some cryptosystems for

authentication and signature. However, the currently best known algorithms for IP are not presented

here: they are presented in [6]. These algorithms are not polynomial, but are much more e�cient than

exhaustive search.

The IP problem with two secrets s and t

Let u and n be two integers (with u 6= 1). Let K be a �nite �eld.

Let A be a public set of u quadratic equations with n variables x1; : : : ; xn over the �eld K. We can

write all these equations like this:

yk =
X
i

X
j

ijkxixj +
X
i

�ikxi + �k; for k = 1; : : :u (1)

Now let s be a bijective and a�ne transformation of the variables xi; 1 � i � n, and let t be a bijective

and a�ne transformation of the variables yk ; 1 � k � u.

Let s(x1; : : : ; xn) = (x0
1
; : : : ; x0n), and t(y1; : : : ; yu) = (y0

1
; : : : ; y0u).

From (1) we will obtain k equations that gives the y0k values from the x0i values like this:

y0k =
X
i

X
j

0ijkx
0
ix

0
j +

X
i

�0ikx
0
i + �0k ; for k = 1; : : :u. (2)

Let B be the set of these u equations.

We will say that A and B are \isomorphic", i.e. there is a double bijective and a�ne transformation

that gives B from A. And we will say that (s; t) is an \isomorphism" from A to B.

The \Isomorphism of Polynomials Problem" is this problem: when A and B are two public sets of a u

quadratic equations, and if A and B are isomorphs, �nd an isomorphism (s; t) from A to B.

Example. If u = n no polynomial algorithms to solve this problem are known. If such an algorithm

were found then it would give us a way to �nd the keys of the Matsumoto-Imai algorithm (and not only

�nd a way to decrypt most of the messages). So it would give us a new, and more powerful, attack on

the Matsumoto-Imai algorithm. Moreover if such an algorithm were found then in HFE it would be

essential for security to keep f secret. On the contrary as long as no such algorithm is found HFE may

be still secure if f is public.

33

Note. We could think to proceed like this in order to �nd s and t: to introduce the matrix of s

and t values and to formaly identify the equations (1) and (2). However we will obtain like this some

equations of total degree two in the values of s and t and the general problem of solving equations of

degree � two in a �nite �eld is NP hard. So this idea does not work.

The IP authentication scheme with two secrets s and t

Public: Two isomorphic sets A and B of u quadratic equations with n variables over a �eld K.

Secret: An isomorphism (s; t) from A to B.

Notations The equations of A are the equations (1) of section 2, they give the yk values from xi
values, and the equations of B are the equations (2) of section 2, they give the y0k values from the x0i
values.

Let us assume that Alice knows the secret (s; t) and that Alice wants to convince Bob of this knowledge,

without revealing her secret. Alice and Bob will follow this protocol:

Step 1. Alice randomly computes a set C of equations isomorph to A.

For this, she randomly computes an a�ne bijection s0 of the values xi; 1 � i � n, and an a�ne bijection

t0 of the variables yk; 1 � k � u.

The u equations of C are u equations like this:

y00k =
X
i

X
j

00ijkx
00
i x

00
j +

X
i

�00ikx
00
i + �00k ; for k = 1; : : :u. (3)

� s gives the transformation x! x0.

� t gives the transformation y ! y0.

� s0 gives the transformation x! x00.

� t0 gives the transformation y ! y00.

Step 2. Alice gives the set C of equations (3) to Bob.

Step 3. Bob asks Alice either to

(a) Prove that A and C are isomorphic.

(b) Prove that B and C are isomorphic.

Moreover Bob choose to ask (a) or (b) randomly with the same probability 1/2.

Step 4. Alice complies.

If Bob ask (a), then she reveals s0 and t0.

If Bob ask (b), then she reveals s0 � s�1 and t0 � t�1 (i.e. the transformations x0 ! x00 and y0 ! y00).

It is easy to prove that this protocol is zero-knowledge and that if somebody doesn't know an iso-

morphism (s; t) from A to B the probability to successfully pass the protocol is at most 1=2.

So if Alice and Bob repeat steps (1) to (4) N times, the probability of success will be at most 1=2N .

Parameters

Analogous to the problem of �nding the secret a�ne transformations s and t of HFE when f is public

or of the Matsumoto-Imai algorithm, we could have u = n = 64 and K = F2 for example in a IP

authentication scheme or u = n = 16 and K = F16. However more practical values may be su�cient

for security.

For example u = 64 and n = 16 may be su�cient with K = F2. (In HFE n � 40 and K = F2 will

not be su�cient because we could �nd a cleartext by exhaustive search in 240 computations, but here

we have to �nd a key (s; t) and this is expected to be more di�cult than to �nd a cleartext from a

ciphertext).

34

Honestly it is not actually completely clear what minimal values for u and n could be chosen for security.

(Below, we will suggest some explicit values). We have not spend enough time on algorithms to solve

IP to have a clear view of the security values. However we will see in section 18 some algorithms much

better than exhaustive search on s.

Less computations with larger public keys

Instead of only two sets of public isomorphic equations (A) and (B), less us now assume that we have

k sets of public isomorphic equations (P1); (P2); : : :(Pk).

We denote by x
(1)

i the variables of (P1); : : : and by x
(k)
i the variables of (Pk). And we denote by sj the

secret a�ne transformation from x(1) to x(j), 2 � j � k. (So all the k equations are isomorphic to (P1),

so each couple of these equations are isomorphic).

Of course we can assume if we want that all the secret a�ne transformations sj ; 2 � j � k, are computed

from one small secret K, for example K is a secret DES key and the matrix of the sj are obtained by

some computations of DESK.

So the public key is larger, since we have k equations (Pj), but the secret key can be still small.

The authentication now proceed like this:

Step 1. Alice randomly computes, as usual, one equation C isomorph to P1.

Step 2. Alice gives this equation C to Bob.

Step 3. Bob randomly chose a value u, 1 � u � k, and ask Alice to prove that C and Pu are isomorphic.

Step 4. Alice complies.

It is still easy to prove that this protocol is zero-knowledge and that if somebody doesn't know any

isomorphism s from one (Pi) to one (Pj), i 6= j, then the probability to successfully pass the protocol

is at most 1=k.

So if Alice and Bob repeat steps (1) to (4) N times, the probability of success will be at most 1=kN .

19 IP with one secret s

The IP problem with one secret s

Let n be an integer. Let K be a �nite �eld.

Let A be one public cubic equation with n variables x1; : : : ; xn over the �eld K. (Here in A we have

only one equation, but of degree 3 and not 2). We can write this equation (A) like this:

XXX

ijkxixjxk +

XX
�ijxixj +

X
�ixi + �0 = 0: (A):

Now let s be a bijective and a�ne transformation of the variables xi; 1 � i � n.

Let s(x1; : : : ; xn) = (x0
1
; : : : ; x0n).

From (A) we will obtain one equation (B) in x0i like this:

XXX

0ijkx

0
ix

0
jx

0
k +

XX
�0ijx

0
ix

0
j +

X
�0ix

0
i + �0 = 0 (B):

We will say that (A) and (B) are \isomorphic", i.e. there is a bijective and a�ne transformation that

gives B from A. And we will say that s is an \isomorphism" from A to B.

The \Isomorphism of Polynomials Problem" is now this problem: when A and B are two public sets

of such equations, and if A and B are isomorphs, �nd an isomorphism s from A to B.

Note. For equations of total degree � 3, we know no polynomial algorithm to solve this IP problem.

However, as we mentioned in note 1 above, for equations of total degree 2 there is a polynomial algorithm

to solve the problem, because there is a \canonical" representation of each quadratic equations over

a �nite �eld (cf [10], chapter 6 for example). If (A) and (B) are isomorphs, then the two canonical

35

representations of (A) and (B) will be easilly found, will be the same, and this will give the isomorphism

from (A) to (B). This is the reason why we have chosen equations of degree � 3. (Another possibility

is to have at least two equations in (A) and (B), as we did above, but still with only one secret s: we

do not use t).

The IP authentication scheme with one secret s

Public: Two equations A and B of total degree 3 with n variables over a �eld K (or a set A of at least

two equations of total degree 2 with n variables over a �eld K, and a similar set B).

Secret: An isomorphism s from A to B.

Notations. We denote by xi; 1 � i � n, the n variables of A, and by x0i; 1 � i � n, the n variables of

B.

Step 1. Alice randomly computes one equation C isomorph to A. For this she randomly computes an

a�ne bijection s0 of the values xi; 1 � i � n.

� s gives the transformation x! x0.

� s0 gives the transformation x! x00.

And C is the equation obtained from A with the x00i variables instead of the xi variables.

Step 2. Alice gives the equation C to Bob.

Step 3. Bob asks Alice either to

(a) Prove that A and C are isomorphic.

(b) Prove that B and C are isomorphic.

Moreover Bob choose to ask (a) or (b) randomly with the same probability 1/2.

Step 4. Alice complies.

If Bob ask (a), then she reveals s0.

If Bob ask (b), then she reveals s0 � s�1 (i.e. the transformation x0 ! x00).

It is easy to prove that this protocol is zero-knowledge and that if somebody doesn't know an iso-

morphism s from A to B the probability to successfully pass the protocol is at most 1/2.

So if Alice and Bob repeat steps (1) to (4) N times, the probability of success will be at most 1=2N .

Remark: As in section 17.4, this algorithm can be improved if we use k public isomorphic equations:

with k > 2, we will have a larger public key but les computations to perform.

20 IP for asymmetric signatures

The Fiat-Shamir authentication scheme and the Guillou-Quisquater authentication scheme can be

transformed in signature scheme by using a now classical transformation by introducing hash function.

This transformation works also very well here for the IP algorithm.

Let M be the message to sign.

The signature algorithm is this one:

Step 1. Alice randomly computes � equations Ci isomorphs to P1.

Step 2. Alice computes hash (M jjC1jj : : :C�), where jj is the concatenation function, and hash a

public hash function su�ciently large such that the �rst bits of output can give � values e1; : : : ; e�,

where each ei is a value between 1 and k.

36

Step 3. Alice computes the � isomorphisms ti; 1 � i � �, such that each ti is an isomorphism

from Ci to Pei .

The signature on M by Alice is then (T;E) where T is the vector (t1; t2; : : :t�) and E is the vec-

tor (e1; e2; : : :e�).

To verify this signature, Bob proceeds like this:

Step 1. Bob computes C1; : : : ; C� such that ti; 1 � i � � is an isomorphism from Ci to Pei .

Step 2. Bob checks that the �rst bits of hash (M jjC1jj : : :C�) are the entries ei of E.

21 About the security of IP schemes

In [6], the best known algorithms for IP are presented. Moreover, in [6], some links between IP and

some famous problems (such as the Graph Isomorphism of Fast Matrix Multiplication) are presented.

These results suggest that there is probably no polynomial algorithm for IP. However, some algorithms

presented in [6] are much more e�cient than exhaustive search. The typical complexity for IP with

two secrets seems to be about O(qn) or even O(qn=2) (instead of O(q(n2)) for exhaustive search).

22 Numerical examples

Numerical examples for IP authentications and signatures with one secret s

Notations: As above, k is the number of public isomorphic equations, N is the number of rounds

(for authentications), � is the number of random isomorphims used (for signatures).

In authentications

For security we must have kN � 220 because the probability of success without the secrets is 1=kN and

we must have qn(n+1) larger than 264, where q = jKj, in order to avoid exhaustive search on s. More

precisely, we must have qn
p
2
p
n larger than 264 to avoid some attacks similar as those given above. So

for example if K = F2 we suggest to have n � 16. However n � 12 might be su�cient: : :

In signatures

For security we must have k� � 264 (because the probability of success without the secrets is 1=k�) and

as before we must have qn
p
2
p
n larger than 264, where q = jKj (in order to avoid exhaustive search on

s). If s is linear (not only a�ne) then the lenght of the public key (with equations of degree three) is

k:
n(n�1)(n�2)

6
ln2(q) bits, and the lenght of the signature is �:(ln2(k) + n2 ln2(q)) bits.

Example 1. If K = F2; n = 16; � = 4 and k = 216, then the lenght of the public key is k:16:15:14=3!

bits = 4.4 Megabytes (with one equation of degree three, or 2k:16:15=2 bits = 1.9 Megabytes with two

equations of degree two). This is huge but can be store in a hard disc of a Personnal Computer, and

the lenght of the signature is ' 4:(16 + 16:16) = 1088 bits.

Note. Here again, instead of n = 16, n = 12 is perhaps su�cient for security. In this case the lenght

of the signature will be only 576 bits.

Example 2. If K = F2; n = 16; � = 16 and k = 16, then the lenght of the public key is 1120 bytes

with one equation of degree three, or 480 bytes with two equations of degree two, and the lenght of the

signature is ' 16:(4 + 16:16) = 4128 bits.

37

Example 3. If K = F16; n = 6; � = 16 and k = 16, then the lenght of the public key is only 160

bytes with one equation of degree three, or 240 bytes with two equations of degree two, and the lenght

of the signature is 2368 bits.

Example 4. If K = F16; n = 6; � = 4 and k = 216 then the lenght of the public key is 640 Kbytes

and the lenght of the signatures is 640 bits.

Numerical examples for IP with two secrets

As we said in section 2 we haven't enough results on algorithms to solve the IP problem to have a

precise evaluation of the parameters needed for security. However we will suggest now some examples

of parameters (smaller values may be enough for security, or larger values may be needed: : : it is not

clear right now).

In signature, for security we must have k� � 264 (because the probability of success without the secrets

is 1=k�) and q
n2+n+2u

2 \much larger" than 264 and u 6= 1 (because of the attack seen in section 2). The

words \much larger" comes to the fact that the algorithm of section 2 can probably be improved a lot.

The lenght of the public key is u:k:
n(n�1)

2
ln2(q) bits and the lenght of the signature is �:(ln2(k) +

n2 ln2(q)) bits.

Example 1. K = F2; u = n = 64; � = 16; k = 16.

Then the lenght of the public key is ' 256 bytes, and the lenght of the signature is ' 65600 bits.

Example 2. K = F16; u = n = 16; � = 16; k = 16.

Then the lenght of the public key is ' 16k bytes, and the lenght of the signatures is ' 16000 bits.

Example 3. K = F256; u = n = 8; � = 16; k = 16.

Then the lenght of the public key is 3584 bytes, and the lenght of the signature is 8256 bits.

23 More variations of the IP schemes

It is easy to design a lot of variations of the IP schemes. For example we can have secret change of

variables of degree two (instead of one), or non polynomial secret change of variables in mathematical

equations in very general sets (not necessarily on �nite �elds). In [6] we will also present some variations

where the security is relied to some famous mathematical problems (such as fast matrix multiplication,

or fast cross product mutiplication). However, these schemes are based on Morphisms of Polynomials

(instead of Isomorphism of Polynomials), so that they are generally less e�cient.

24 A HFE challenge

We will present below a challenge on two explicit (quadratic) HFE signature schemes.

First scheme: This HFE scheme gives signatures of length 80 bits. The �eld K is F2, n = 80,

and the general scheme is the scheme of section 4.3, where the hash function is SHA-1. The hidden

polynomial f is

f(a) =
X
i;j

�ija
q
�ij+q

'ij
+
X
i

�ia
q�i + �0;

where the expression contains all the possible monomials of (monovariate) degree � 100 (and a mul-

tivariate degree 2 in a basis over F2), and where the values �ij , �i and �0 are secret values randomly

chosen in F280 . (Hence, we have terms in a, a2, a3, a4, a5, a6, a8, a9, a10, a12, a16, a17, a18, a20, a24,

a32, a33, a34, a36, a40, a48, a64, a65, a66, a68, a72, a80, a96.)

Here, the length of the public key is 80 � (80�81
2

) � 1
8
= 32 Kbytes.

38

Second scheme: This second signature scheme gives signatures of length 144 bits. The �eld K is

K = F16, n = 36, and 4 of the 36 equations are not given public as explained in section 11. The hidden

polynomial f is

f(a) =
X
i;j

�ija
q
�ij+q

'ij
+
X
i

�iq
q�i + �0;

where the expression contains all the possible monomials with a (monovariate) degree � 4352 (and

a multivariate degree 2 in a basis over F16), and where the values �ij , �i and �0 are secret values

randomly chosen in F1636 . (Hence, we have terms in a, a2, a16, a17, a32, a256, a257, a272, a4096, a4097,

a4112, a4352.)

Here, the length of the public key is 32 � (36�37
2

+ 36) � 1
2
= 11 Kbytes.

The hash function here is MD5, and S is a valid signature of a messageM if and only if HFE(S) =MD5(M).

(Here HFE has a 144 bits input and 128 bits output.)

A prize of US $500 will be given to the �rst person able to give a valid signature of a message that we

did not signed, for any of the two examples (i.e. the total prize is of US $1000 if the two public keys

are broken).

25 Conclusion

We have designed two new classes of algorithms: HFE and IP. HFE can be used in asymmetric cryptog-

raphy for encryption, for signatures, or for authentication. IP can be used in asymmetric cryptography

for signatures or for authentication.

These algorithms are based on multivariate polynomials over a �nite �eld of total degree two (or three

for the IP algorithms with one secret).

One interesting point of HFE is that these algorithms can lead to very short asymmetric signatures

(128 bits for example). Similarly they can encrypt messages by blocks whith very short blocks (128

bits blocks for example).

Another interesting point of these algorithms is that their security do not depend on factorisation or

discret log, and very few algorithms for encryption or signatures in asymmetric cryptography are known

that do no rely on these problems.

However a lot of problems are still open, for example:

Are these algorithms really secure ?

Is it possible to design strong HFE, with public polynomials of degree two and a secret function f with

two or more monomials, that are also permutations ?

Is it possible to solve a general system of multivariate quadratic equations over GF (2) much more

quickly than with an exhaustive search ?

Acknowledgments

I want to thank Isabelle Gu�erin-Lassous and Nicolas Courtois for doing the simulations of Part II,

section 8. I want also to thank Daniel Augot for doing the simulations of Part II, section 7.

However Daniel Augot told me that he does not want to endorse the security of HFE: : :

References

[1] I. Blake, X. Gao, R. Mullin, S. Vanstone and T. Yaghoobian, \Applications of Finite Fields",

Kluwer Academic Publishers.

[2] G. Brassard, \A note on the complexity of cryptography", IEEE Tran. Inform. Theory, Vol. IT-25,

pp. 232-233, 1979.

[3] E. Brickell, A. Odlyzko, Cryptanalysis, A Survey of Recent Results, p. 506, in \Contemporary

Cryptology", IEEE Press, 1992, edited by Gustavus J. Simmons.

[4] D. Coppersmith, M. Franklin, J. Patarin and M. Reiter, \Low-Exponent RSA with Related Mes-

sages", EUROCRYPT'96, Springer Verlag, pp. 1-9.

39

[5] D. Coppersmith and S. Winograd, \Matrix Multiplication via Arithmetic Progressions", J. Sym-

bolic Computation, 1990, Vol. 9, pp. 251-280.

[6] N. Courtois, J. Patarin, L. Goubin, Improved algorithms for Isomorphisms of Polynomials, to be

published at EUROCRYPT'98.

[7] H. Dobbertin, Almost Perfect Nonlinear Power Functions on GF (2n), paper available from the

author.

[8] J.C. Faug�ere, personal communication.

[9] M. Garey, D. Johnson, \Computers and intractability, A Guide to the Theory of NP -

Completeness", FREEMAN.

[10] R. Lidl, H. Niederreiter, \Finite Fields", Encyclopedia of Mathematics and its applications, Volume

20, Cambridge University Press.

[11] T. Matsumoto and H. Imai, \Public Quadratic Polynomial-tuples for e�cient signature-veri�cation

and message-encryption", EUROCRYPT'88, Springer Verlag 1988, pp. 419-453.

[12] A. Menezes, P. van Oorschot and S. Vanstone, \Some computational aspects of root �nding in

GF (qm)", in Symbolic and Algebraic Computation, Lecture Notes in Computer Science, 358

(1989), pp. 259-270.

[13] G. Mullen, \Permutation Polynomials over Finite Fields", in \Finite Fields, Coding Theory, and

Advances in Communications and Computing", Dekker, Volume 141, 1993, pp. 131-152.

[14] J. Patarin, \Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt'88",

CRYPTO'95, pp. 248-261.

[15] J. Patarin, \Asymmetric Cryptography with a Hidden Monomial", CRYPTO'96, pp. 45-60.

[16] J. Patarin, L. Goubin, Asymmetric Cryptography with S-boxes, ICICS'97, LNCS n. 1334, Springer-

Verlag, pp. 369-380.

[17] J. Patarin, L. Goubin, N. Courtois, C��+ and HM: Variations around two schemes of T. Matsumoto

and H. Imai, this paper is not yet published, but is available from the authors.

[18] B. Schneier, \Applied Cryptography", John Wiley and Sons, �rst edition, pp. 88-89, or second

edition, pp. 104-105.

[19] A. Shamir, \An e�cient Identi�cation Scheme Based on Permuted Kernels", CRYPTO'89, pp.

606-609.

[20] J. Stern, \A new identi�cation scheme based on syndrome decoding", CRYPTO'93, pp. 13-21.

[21] P. van Oorschot and S. Vanstone, \A geometric approach to root �nding in GF (qm)", IEEE Trans.

Info. Th., 35 (1989), pp. 444-453.

[22] J. von zur Gathen and V. Shoup, \Computing Frobenius maps and factoring polynomials", Proc.

24th Annual ACM Symp. Theory of Comput., ACM Press, 1992.

40

